首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Rotational Machine Health Monitoring and Fault Detection Using EMD-Based Acoustic Emission Feature Quantification
【24h】

Rotational Machine Health Monitoring and Fault Detection Using EMD-Based Acoustic Emission Feature Quantification

机译:基于基于EMD的声发射特征量化的旋转机械健康监测和故障检测

获取原文
获取原文并翻译 | 示例

摘要

Acoustic emission (AE)-signal-based techniques have recently been attracting researchers' attention to rotational machine health monitoring and diagnostics due to the advantages of the AE signals over the extensively used vibration signals. Unlike vibration-based methods, the AE-based techniques are in their infant stage of development. From the perspective of machine health monitoring and fault detection, developing an AE-based methodology is important. In this paper, a methodology for rotational machine health monitoring and fault detection using empirical mode decomposition (EMD)-based AE feature quantification is presented. The methodology incorporates a threshold-based denoising technique into EMD to increase the signal-to-noise ratio of the AE bursts. Multiple features are extracted from the denoised signals and then fused into a single compressed AE feature. The compressed AE features are then used for fault detection based on a statistical method. A gear fault detection case study is conducted on a notional split-torque gearbox using AE signals to demonstrate the effectiveness of the methodology. A fault detection performance comparison using the compressed AE features with the existing EMD-based AE features reported in the literature is also conducted.
机译:由于声发射信号相对于广泛使用的振动信号具有优势,因此基于声发射(AE)信号的技术最近已引起研究人员对旋转机械健康状况监测和诊断的关注。与基于振动的方法不同,基于AE的技术还处于婴儿期的发展阶段。从机器运行状况监视和故障检测的角度来看,开发基于AE的方法很重要。本文提出了一种基于经验模态分解(EMD)的AE特征量化的旋转机械健康监测和故障检测方法。该方法将基于阈值的降噪技术整合到EMD中,以增加AE突发的信噪比。从去噪信号中提取多个特征,然后融合为单个压缩的AE特征。然后,基于统计方法将压缩的AE功能用于故障检测。使用AE信号在名义上的分体式扭矩变速箱上进行了齿轮故障检测案例研究,以证明该方法的有效性。还进行了使用压缩AE功能与文献中报道的现有基于EMD的AE功能的故障检测性能比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号