首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >New Algorithms for Improved Adaptive Convex Combination of LMS Transversal Filters
【24h】

New Algorithms for Improved Adaptive Convex Combination of LMS Transversal Filters

机译:LMS横向滤波器改进的自适应凸组合的新算法

获取原文
获取原文并翻译 | 示例

摘要

Among all adaptive filtering algorithms, Widrow and Hoff's least mean square (LMS) has probably become the most popular because of its robustness, good tracking properties and simplicity. A drawback of LMS is that the step size implies a compromise between speed of convergence and final misadjustment. To combine different speed LMS filters serves to alleviate this compromise, as it was demonstrated by our studies on a two filter combination that we call combination of LMS filters (CLMS). Here, we extend this scheme in two directions. First, we propose a generalization to combine multiple LMS filters with different steps that provides the combination with better tracking capabilities. Second, we use a different mixing parameter for each weight of the filter in order to make independent their adaption speeds. Some simulation examples in plant identification and noise cancellation applications show the validity of the new schemes when compared to the CLMS filter and to other previous variable step approaches.
机译:在所有自适应滤波算法中,Widrow和Hoff的最小均方(LMS)可能由于其鲁棒性,良好的跟踪特性和简单性而成为最受欢迎的算法。 LMS的缺点是步长意味着收敛速度和最终失调之间的折衷。结合不同速度的LMS过滤器可缓解这种折衷,正如我们对两个过滤器组合(我们称为LMS过滤器(CLMS))的研究所证明的那样。在这里,我们在两个方向上扩展了该方案。首先,我们提出了将多个LMS过滤器与不同步骤组合在一起的概括,从而为组合提供了更好的跟踪功能。其次,我们对过滤器的每个权重使用不同的混合参数,以使其过滤速度独立。与CLMS滤波器和其他先前的可变步长方法相比,工厂识别和噪声消除应用中的一些仿真示例显示了新方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号