首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Application of Parameterized Time-Frequency Analysis on Multicomponent Frequency Modulated Signals
【24h】

Application of Parameterized Time-Frequency Analysis on Multicomponent Frequency Modulated Signals

机译:参数化时频分析在多分量调频信号中的应用

获取原文
获取原文并翻译 | 示例

摘要

Parameterized time-frequency (TF) transforms, with signal-dependent kernel parameters, have been proposed to analyze multicomponent frequency modulated (FM) signals. Usually, the kernel parameters are estimated through recursive approximation of TF representation (TFR) ridge when instantaneous frequency models of the components have the same parameter settings. However, it will be inapplicable if the components have the different FM sources. In this paper, we introduce a novel method that enables the parameterized TF transform to generate the well-concentrated TFR for both the monocomponent signal and a wide class of multicomponent FM signals, whose components are modulated by either the same or the different sources. The proposed method contains two aspects: 1) estimating kernel parameters based on spectrum concentration index and 2) separating components and assembling the parameterized TFRs of the separated components. An advantage of the proposed method is that it avoids the dependence of the TFR while estimating the parameters. Moreover, it is effective at low signal-to-noise rate. The validity and practical utility of the proposed method are demonstrated by both the simulated and real signals. The results show that it outperforms the traditional TF methods in providing the TFR of the improved concentration for various multicomponent FM signals.
机译:已经提出了带有信号相关内核参数的参数化时频(TF)变换,以分析多分量频率调制(FM)信号。通常,当组件的瞬时频率模型具有相同的参数设置时,通过TF表示(TFR)脊的递归近似来估计内核参数。但是,如果组件具有不同的FM信号源,则将不适用。在本文中,我们介绍了一种新颖的方法,该方法使参数化的TF变换能够为单分量信号和宽范围的多分量FM信号生成浓度集中的TFR,它们的分量受相同或不同源的调制。所提出的方法包括两个方面:1)基于谱浓度指数估计核参数; 2)分离组分和组装分离组分的参数化TFR。所提出的方法的优点在于,它在估计参数时避免了TFR的依赖性。此外,它在低信噪比下有效。仿真和实际信号都证明了该方法的有效性和实用性。结果表明,它在为各种多分量FM信号提供提高浓度的TFR方面优于传统TF方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号