首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >An Adaptive Support Vector Machine-Based Workpiece Surface Classification System Using High-Definition Metrology
【24h】

An Adaptive Support Vector Machine-Based Workpiece Surface Classification System Using High-Definition Metrology

机译:基于高分辨率度量的自适应支持向量机工件表面分类系统

获取原文
获取原文并翻译 | 示例

摘要

The shape of a machined surface significantly impacts its functional performance and exhibits different spatial variation patterns that reflect process conditions. Classification of these surface patterns into interpretable classes can greatly facilitate manufacturing process fault detection and diagnosis. High-definition metrology (HDM) can generate high density data and detect small differences of workpiece surfaces, which exhibits better performance than traditional measurement methods in process diagnosis. In this paper, a novel adaptive support vector machine (SVM)-based workpiece surface classification system is developed based on HDM. A nonsubsampled contourlet transform is used to extract features before classification with its characteristics of multiscale, multidirection, and less dimension of feature vectors. An adaptive particle swam optimization (APSO) algorithm is developed to search the optimal parameters of penalty coefficient and kernel function of SVM and is helpful to escape from the local minimum by its strong ability of global search. A varied step-length pattern search algorithm is explored to optimize the global point in every iteration of the APSO algorithm by its good performance in local search. These two algorithms are combined with their relative merits to find the optimal parameters for building an adaptive SVM classifier. The results of case studies show that the proposed adaptive SVM-based classification system can achieve a relatively high classification accuracy in the field of workpiece surface classification.
机译:机加工表面的形状会显着影响其功能性能,并表现出反映工艺条件的不同空间变化模式。将这些表面图案分类为可解释的类别可以极大地促进制造过程故障的检测和诊断。高清晰度计量(HDM)可以生成高密度数据并检测工件表面的微小差异,在过程诊断中比传统的测量方法具有更好的性能。本文基于HDM,开发了一种基于自适应支持向量机的工件表面分类系统。非下采样轮廓波变换用于在分类之前提取特征,该特征具有多尺度,多方向和特征向量维数较少的特征。提出了一种自适应粒子群寻优算法(APSO)来搜索SVM的惩罚系数和核函数的最优参数,并具有强大的全局搜索能力,有助于摆脱局部最小值。探索了一种变步长模式搜索算法,以通过其在局部搜索中的良好性能来优化APSO算法每次迭代中的全局点。将这两种算法及其相对优点相结合,以找到用于构建自适应SVM分类器的最佳参数。实例研究结果表明,所提出的基于支持向量机的自适应分类系统在工件表面分类领域可以达到较高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号