首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >A High-Efficiency Discrete Current Mode Output Stage Potentiostat Instrumentation for Self-Powered Electrochemical Devices
【24h】

A High-Efficiency Discrete Current Mode Output Stage Potentiostat Instrumentation for Self-Powered Electrochemical Devices

机译:用于自供电电化学装置的高效离散电流模式输出级恒电位仪

获取原文
获取原文并翻译 | 示例

摘要

Power usage reduction and efficiency enhancement of measurement devices are a major challenge in self-powered wireless sensor nodes and also sensors implanted in the human body. Such instruments should be usually operated using the limited environmental energy resources. Electrochemical sensors and potentiostats are extensively used in this context for the measurement of chemical components. In these cases, a lot of research has focused on internal processing blocks power reduction of the potentiostat circuit. In this paper, a discrete current mode (DCM) switching potentiostat is presented, which can significantly reduce the static power usage at the output stage of the potentiostat compared with linear output stage counterparts. Using time-domain analyses, the unexpected oscillatory behavior of a continuous current mode (CCM) output stage switching potentiostat is investigated. Consecutively, it is shown that in current fabrication processes, this configuration will consume more power than the DCM topology. The correctness of the designs and analyses are shown using both simulation and experimental results. The simulated 0.18-μm CMOS DCM output stage potentiostat has an efficiency of 95% at an output load of 12 μA, while the long-channel MOSFET-based prototype implementation shows an efficiency of 64%.
机译:降低功耗和提高测量设备的效率是自供电无线传感器节点以及植入人体的传感器的主要挑战。通常应使用有限的环境能源来操作此类仪器。在这种情况下,电化学传感器和恒电位仪广泛用于化学成分的测量。在这些情况下,许多研究都集中在内部处理模块上以降低恒电位仪电路的功耗。本文提出了一种离散电流模式(DCM)开关稳压器,与线性输出级的同类产品相比,它可以显着降低稳压器输出级的静态功耗。使用时域分析,研究了连续电流模式(CCM)输出级开关稳压器的意外振荡行为。连续表明,在当前的制造工艺中,此配置将比DCM拓扑消耗更多的功率。仿真和实验结果均表明了设计和分析的正确性。经过仿真的0.18μmCMOS DCM输出级稳压器在12μA的输出负载下效率为95%,而基于长沟道MOSFET的原型实现显示效率为64%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号