首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Sensitivity of roots to errors in the coefficient of polynomials obtained by frequency-domain estimation methods
【24h】

Sensitivity of roots to errors in the coefficient of polynomials obtained by frequency-domain estimation methods

机译:根对通过频域估计方法获得的多项式系数误差的敏感性

获取原文
获取原文并翻译 | 示例

摘要

Although the roots of a polynomial of high order are extremely sensitive to perturbations in its coefficients, experience has demonstrated that frequency-domain estimation techniques succeed in the determination of accurate poles and zeros, even in the case of high-order transfer function models. The authors prove that this is due to the correlations among the estimated coefficients. When the result of a measurement is a set of correlated values, they conclude that it is not justifiable to use the standard deviation to determine the number of significant digits. Additional digits have to be considered in order to maintain the information enclosed in the correlations.
机译:尽管高阶多项式的根对其系数的扰动极为敏感,但经验表明,即使在高阶传递函数模型的情况下,频域估计技术也能成功确定精确的零点和零点。作者证明这是由于估计系数之间的相关性。当测量结果是一组相关值时,他们得出结论认为使用标准偏差确定有效位数是不合理的。为了保持相关性中包含的信息,必须考虑其他数字。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号