首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Multistep Dynamic Slow Feature Analysis for Industrial Process Monitoring
【24h】

Multistep Dynamic Slow Feature Analysis for Industrial Process Monitoring

机译:MULTISTEP工业过程监控动态慢速特征分析

获取原文
获取原文并翻译 | 示例

摘要

Multivariate statistical process monitoring has been widely used in industry. However, traditional algorithms often ignore the dynamic characteristics of actual industry process. This study proposes a novel algorithm called multistep dynamic slow feature analysis (MS-DSFA), which has completed the full-condition monitoring of a dynamic system and divided dynamic structures more precisely. This algorithm achieves an optimal detection rate according to multiple control limits. To enrich the experiments, we select a numerical example, Tennessee Eastman process, and XJTU-SY bearing data sets to verify the universality of the algorithm. According to the overall score for optimal detection rates and false alarm rates, MS-DSFA stands out in the comparison of existing algorithms.
机译:多元统计过程监测已广泛用于工业。然而,传统算法通常忽略了实际行业过程的动态特征。本研究提出了一种名为MultiSep动态慢速特征分析(MS-DSFA)的新型算法,该算法已经完成了动态系统的全部状态监测,并更准确地分开动态结构。该算法根据多种控制限制实现了最佳检测率。为了丰富实验,我们选择一个数字示例,田纳西州的Eastman流程和XJTU-SYRASE数据集,以验证算法的普遍性。根据最佳检测率的总分和误报率,MS-DSFA在现有算法的比较中脱颖而出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号