首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Partial Discharge Random Noise Removal Using Hankel Matrix-Based Fast Singular Value Decomposition
【24h】

Partial Discharge Random Noise Removal Using Hankel Matrix-Based Fast Singular Value Decomposition

机译:局部放电随机噪声去除基于Hankel矩阵的快速奇异值分解

获取原文
获取原文并翻译 | 示例

摘要

The most effective method for insulation assessment in an electrical power apparatus is partial discharge (PD) detection. During measurements, the interference from the background environment hampers the PD signal and reduces its measurement accuracy. This article discusses on the implementation of a Hankel matrix (HM)-based fast singular value decomposition (H-FSVD) technique for removing noise from the PD signals. The data are first represented into HM structure, with appropriate sampling then using the Lanczos process, the HM size is reduced and through singular spectral analysis thresholds are fixed for noise detection and removal. This algorithm has been examined on simulated as well as PD signals measured on two different laboratory environments from transformers with real and simulated noise. The experiment is part of a series of experiments to detect PD patterns related to realistic transformer defects. The denoising performance of H-FSVD is compared with the wavelet-based denoising methods, empirical mode decomposition method, and normal SVD. Numerical results show that H-FSVD efficiently removes the noise with less computation time, even for large size data.
机译:用于电力装置中的绝缘评估的最有效方法是局部放电(PD)检测。在测量期间,从后台环境的干扰妨碍了PD信号并降低了其测量精度。本文讨论了基于Hankel矩阵(HM)的快速奇异值分解(H-FSVD)技术的实现,用于去除PD信号的噪声。数据首先表示为HM结构,然后使用Lanczos工艺进行适当的采样,通过奇异谱分析阈值来减少HM尺寸以进行噪声检测和移除。已经在模拟的情况下检查了该算法以及从具有实际和模拟噪声的变压器的两个不同的实验室环境测量的PD信号。实验是一种检测与逼真变压器缺陷相关的PD图案的一系列实验的一部分。将H-FSVD的去噪性能与基于小波的去噪方法,经验模式分解方法和正常SVD进行比较。数值结果表明,H-FSVD有效地消除了较少计算时间的噪声,即使是大尺寸数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号