首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Neural-Network-Based Models of 3-D Objects for Virtualized Reality: A Comparative Study
【24h】

Neural-Network-Based Models of 3-D Objects for Virtualized Reality: A Comparative Study

机译:基于神经网络的3D对象虚拟现实模型的比较研究

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a comprehensive analysis and comparison of the representational capabilities of three neural architectures for three-dimensional (3-D) object representation in terms of purpose, computational cost, complexity, conformance and convenience, ease of manipulation, and potential applications in the context of virtualized reality. Starting from a pointcloud that embeds the shape of the object to be modeled, a volumetric representation is obtained using a multilayer feedforward neural network (MLFFNN) or a surface representation using either the self-organizing map (SOM) or the neural gas network. The representation provided by the neural networks (NNs) is simple, compact, and accurate. The models can be easily transformed in size, position, and shape. Some potential applications of the presented architectures in the context of virtualized reality are for the modeling of set operations and object morphing, for the detection of object collision, and for object recognition, object motion estimation, and segmentation.
机译:本文从目的,计算成本,复杂性,一致性和便利性,易操作性以及潜在应用等方面对3种用于三维(3-D)对象表示的神经体系结构的表示能力进行了全面的分析和比较。虚拟现实的环境。从嵌入要建模对象形状的点云开始,使用多层前馈神经网络(MLFFNN)或使用自组织图(SOM)或神经气体网络的表面表示获得体积表示。神经网络(NNs)提供的表示非常简单,紧凑和准确。可以轻松地转换模型的大小,位置和形状。在虚拟现实的上下文中,所提出的体系结构的一些潜在应用是用于设置操作和对象变形的建模,对象碰撞的检测以及对象识别,对象运动估计和分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号