首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Processing and Analysis of Underwater Acoustic Images Generated by Mechanically Scanned Sonar Systems
【24h】

Processing and Analysis of Underwater Acoustic Images Generated by Mechanically Scanned Sonar Systems

机译:机械扫描声纳系统产生的水下声像的处理与分析

获取原文
获取原文并翻译 | 示例

摘要

The processing and analysis of images generated by mechanically scanned sonar systems have received poor attention despite their widespread application. In this paper, some efficient methods for acoustic image enhancement and automatic object detection are presented and assessed using a large set of experimental data collected at sea with commercial sonar systems. Specifically, a set of methods for increasing the quality of the gray-level images produced by a fan-shaped-beam sonar is introduced. Such a set includes a dynamic brightness assignment, a precise interpolation, a speckle-reduction filter, and a contrast-enhancement block. Two versions of a template-matching-based method that allows the automatic detection of a simple object contained in a region scanned with a pencil-beam sonar are also proposed and assessed. The main difficulty to be coped with in this field is related to the sparseness of the binary maps generated by this sonar system. The performance and robustness of the proposed techniques have been evaluated using real data that provided satisfactory results for both the image-enhancement and the object-detection tasks. Moreover, the computational burden of most of the proposed techniques turned out to be quite limited, and their real-time implementation with a standard computer architecture could be estimated.
机译:机械扫描声纳系统生成的图像的处理和分析尽管得到了广泛的应用,但是却引起了人们的关注。在本文中,提出了一些有效的方法来进行声像增强和自动目标检测,并使用海上声纳系统的大量实验数据来评估这些方法。具体地,介绍了一组用于增加由扇形束声纳产生的灰度图像的质量的方法。这样的集合包括动态亮度分配,精确插值,斑点减少滤波器和对比度增强块。还提出并评估了两种版本的基于模板匹配的方法,该方法可以自动检测包含在用铅笔束声纳扫描的区域中的简单对象。该领域要解决的主要困难与该声纳系统生成的二进制图的稀疏性有关。已使用实际数据评估了所提出技术的性能和鲁棒性,这些数据为图像增强和对象检测任务提供了令人满意的结果。而且,大多数提议的技术的计算负担被证明是相当有限的,并且可以估计它们在标准计算机体系结构下的实时实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号