首页> 外文期刊>INFORMS journal on computing >The Risk-Averse Static Stochastic Knapsack Problem
【24h】

The Risk-Averse Static Stochastic Knapsack Problem

机译:风险厌恶静态随机背包问题

获取原文
获取原文并翻译 | 示例

摘要

This paper considers a single-resource allocation problem for multiple items with random, independent resource consumption values, known as the static stochastic knapsack problem (SSKP). Whereas the existing SSKP literature generally assumes a risk-neutral objective using an expected value approach, such an approach can maximize expected profit while admitting the possibility of very high losses in some unfavorable scenarios. Because of this, we consider two popular risk measures, conditional value-at-risk (CVaR) and a mean-standard deviation trade-off, in order to address risk within this problem class. Optimizing the trade-offs associated with these risk measures presents significant modeling and computational challenges. To address these challenges, we first provide mixed-integer linear programming models using a scenario-based approach, which can be exploited to provide exact solutions for discrete distributions. For general distributions, a sample average approximation method provides approximate solutions. We then propose a general mixed integer nonlinear optimization modeling approach for the special case of normally distributed resource requirements. This modeling approach incorporates a new class of normalized penalty functions that account for both the expected costs and risks associated with uncertainty, and it can be specialized to a broad class of risk measures, including CVaR and mean-standard deviation. Our results characterize key optimality properties for the associated continuous relaxation of the proposed general model and provide insights on valuable rank-ordering mechanisms for items with uncertain resource needs under different risk measures. For this broadly applicable case, we present a class of efficient and high-performing asymptotically optimal heuristic methods based on these optimality conditions. An extensive numerical study evaluates the efficiency and quality of the proposed solution methods, identifies optimal item selection strategies, and examines the sensitivity of the solution to varying levels of risk, excess weight penalty values, and knapsack capacity values.
机译:本文考虑了具有随机,独立资源消耗值的多个项目的单一资源分配问题,称为静态随机背包问题(SSKP)。然而,现有的SSKP文献通常假设利用预期价值方法的风险中立目标,这种方法可以最大化预期的利润,同时承认在一些不利情景中非常高的损失的可能性。因此,我们考虑了两个流行的风险措施,有条件的价值 - 风险(CVAR)和平均标准偏差权衡,以解决这个问题类中的风险。优化与这些风险措施相关的权衡呈现出显着的建模和计算挑战。为了解决这些挑战,我们首先使用基于场景的方法提供混合整数线性编程模型,可以利用这些方法来为离散分布提供精确的解决方案。对于一般分布,样本平均近似方法提供近似解决方案。然后,我们提出了一种通用混合整数非线性优化建模方法,用于特殊情况的正常分布式资源要求。该建模方法纳入了一类新的规范化惩罚职能,该职能占与不确定性相关的预期成本和风险,并且可以专门用于广泛的风险措施,包括CVAR和卑鄙标准差。我们的结果表征了所提出的一般模型的相关连续放松关键的最优性能,并为不同风险措施提供了不确定的资源需求的物品有价值的等级排序机制的见解。对于这一广泛适用的情况,我们基于这些最优性条件展示了一类高效且高性能的渐近最佳启发式方法。广泛的数值研究评估了所提出的解决方案方法的效率和质量,识别最佳项目选择策略,并检查解决方案对风险,超重罚款值和背包容量值不同的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号