首页> 外文期刊>INFORMS journal on computing >Breaking the r_(max) Barrier: Enhanced Approximation Algorithms for Partial Set Multicover Problem
【24h】

Breaking the r_(max) Barrier: Enhanced Approximation Algorithms for Partial Set Multicover Problem

机译:打破r_(max)屏障:部分集多件问题的增强型近似算法

获取原文
获取原文并翻译 | 示例

摘要

Given an element set E of order n, a collection of subsets S ⊆ 2~E, a cost c_S on each set S ∈ S, a covering requirement r_e for each element e ∈ E, and an integer k, the goal of a minimum partial set multicover problem (MinPSMC) is to find a subcollection Fe ⊆S to fully cover at least k elements such that the cost of F is as small as possible and element e is fully covered by F if it belongs to at least r_e sets of F. This problem generalizes the minimum k-union problem (MinkU) and is believed not to admit a subpolynomial approximation ratio. In this paper, we present a (41og nH(Δ)In k + 2 log n n~(1/2))-approximation algorithm for MinPSMC, in which Δ is the maximum size of a set in S. And when k = Ω(n), we present a bicriteria algorithm fully covering at least (1 - ε/2log n) k elements with approximation ratio O(1/ε(log n)~2 H(Δ)), where 0 < ε < 1 is a fixed number. These results are obtained by studying the minimum density subcollection problem with (or without) cardinality constraint, which might be of interest by itself.
机译:给定订单n的元素集E,每个组S的子集S⊆2〜e的集合,每个组元素的成本c_s,每个元素e∈e的覆盖要求R_E,以及最小的目标部分设置多种问题(MINPSMC)是找到一个要完全覆盖的子/级FE⊆,以便至少k元素,使得F的成本尽可能小,如果它属于至少r_e套,则f元素e完全覆盖F.此问题概括了最小的K-Union问题(Minku),据信不承认亚级近似值。在本文中,我们呈现了一个(410g(δ)的k + 2 log nn〜(1/2)) - Minpsmc的近似算法,其中δ是s中设置的最大尺寸.K =Ω时(n),我们介绍了一种完全覆盖的双标准算法至少(1 - ε/ 2log n)k元素,近似比o(1 /ε(log n)〜2 h(δ)),其中0 <ε<1是固定数量。这些结果是通过研究(或没有)基数限制的最小密度沉积问题而获得,这本身可能具有感兴趣的问题。

著录项

  • 来源
    《INFORMS journal on computing》 |2021年第2期|774-784|共11页
  • 作者单位

    College of Mathematics and Computer Sciences Zhejiang Normal University Jinhua Zhejiang 321004 China;

    College of Mathematics and Computer Sciences Zhejiang Normal University Jinhua Zhejiang 321004 China;

    Naveen Jindal School of Management University of Texas at Dallas Richardson Texas 75080;

    Department of Computer Science University of Texas at Dallas Richardson Texas 75080;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    partial set multicover; minimum k union; approximation algorithm;

    机译:部分集多套;最小k联合;近似算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号