首页> 外文期刊>INFORMS journal on computing >Learning to Solve Large-Scale Security-Constrained Unit Commitment Problems
【24h】

Learning to Solve Large-Scale Security-Constrained Unit Commitment Problems

机译:学习解决大规模安全受限的单位承诺问题

获取原文
获取原文并翻译 | 示例

摘要

Security-constrained unit commitment (SCUC) is a fundamental problem in power systems and electricity markets. In practical settings, SCUC is repeatedly solved via mixed-integer linear programming (MIP), sometimes multiple times per day, with only minor changes in input data. In this work, we propose a number of machine learning techniques to effectively extract information from previously solved instances in order to significantly improve the computational performance of MIP solvers when solving similar instances in the future. Based on statistical data, we predict redundant constraints in the formulation, good initial feasible solutions, and affine subspaces where the optimal solution is likely to lie, leading to a significant reduction in problem size. Computational results on a diverse set of realistic and large-scale instances show that using the proposed techniques, SCUC can be solved on average 4.3 times faster with optimality guarantees and 10.2 times faster without optimality guarantees, with no observed reduction in solution quality. Out-of-distribution experiments provide evidence that the method is somewhat robust against data-set shift. Summary of Contribution. The paper describes a novel computational method, based on a combination of mixed-integer linear programming (MILP) and machine learning (ML), to solve a challenging and fundamental optimization problem in the energy sector. The method advances the state-of-the-art, not only for this particular problem, but also, more generally, in solving discrete optimization problems via ML. We expect that the techniques presented can be readily used by practitioners in the energy sector and adapted, by researchers in other fields, to other challenging operations research problems that are solved routinely.
机译:安全约束的单位承诺(SCUC)是电力系统和电力市场的基本问题。在实际设置中,通过混合整数线性编程(MIP)反复解决SCUC,有时每天多次多次解决,仅在输入数据中的次要变化。在这项工作中,我们提出了许多机器学习技术,以有效提取来自先前解决的实例的信息,以便在解决未来的类似实例时显着提高MIP求解器的计算性能。基于统计数据,我们预测了制定,良好的初始可行解决方案和仿射子空间中的冗余约束,其中最佳解决方案可能撒谎,导致问题大小显着降低。计算结果在多种现实和大规模实例上显示,使用所提出的技术,SCUC可以平均解决,最优性保证并在没有最优性保证的情况下更快地提高10.2倍,没有观察到的解决方案质量。超出分销实验提供了证据表明该方法对数据集换档有所鲁棒。贡献综述。本文介绍了一种新颖的计算方法,基于混合整数线性编程(MILP)和机器学习(ML)的组合来解决能量领域的具有挑战性和基本的优化问题。该方法推进了最先进的,不仅针对这种特殊问题,而且还更一般地,在通过ML解决离散优化问题。我们预计提供的技术可以随时能够通过能源部门的从业者和其他领域的研究人员改编到其他具有挑战性的运作研究问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号