首页> 外文期刊>INFORMS journal on computing >Reducing Simulation Input-Model Risk via Input Model Averaging
【24h】

Reducing Simulation Input-Model Risk via Input Model Averaging

机译:通过输入模型平均降低模拟输入模型风险

获取原文
获取原文并翻译 | 示例

摘要

Input uncertainty is an aspect of simulation model risk that arises when the driving input distributions are derived or "fit" to real-world, historical data. Although there has been significant progress on quantifying and hedging against input uncertainty, there has been no direct attempt to reduce it via better input modeling. The meaning of "better" depends on the context and the objective: Our context is when (a) there are one or more families of parametric distributions that are plausible choices; (b) the real-world historical data are not expected to perfectly conform to any of them; and (c) our primary goal is to obtain higher-fidelity simulation output rather than to discover the "true" distribution. In this paper, we show that frequentist model averaging can be an effective way to create input models that better represent the true, unknown input distribution, thereby reducing model risk. Input model averaging builds from standard input modeling practice, is not computationally burdensome, requires no change in how the simulation is executed nor any follow-up experiments, and is available on the Comprehensive R Archive Network (CRAN). We provide theoretical and empirical support for our approach.
机译:输入不确定性是当驾驶输入分布衍生或“适合”到现实世界,历史数据时出现的模拟模型风险的一个方面。虽然在对输入不确定性的量化和对冲进行了重大进展情况,但是没有直接尝试通过更好的输入建模来减少它。 “更好”的含义取决于上下文和目标:我们的背景是(a)有一个或多个参数分布的家庭,这些分布是合理的选择; (b)实际世界历史数据预计不会完全符合其中任何一个; (c)我们的主要目标是获得更高保真仿真输出,而不是发现“真实”分布。在本文中,我们表明频率模型平均可以是创建输入模型的有效方法,从而降低了模型风险。输入模型从标准输入建模实践中的平均构建,不计算繁琐,不需要更改模拟的执行,也不是任何后续实验,并且可在全面的R存档网络(CRAN)上使用。我们为我们的方法提供理论和实证支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号