首页> 外文期刊>INFORMS journal on computing >Decision Diagram Decomposition for Quadratically Constrained Binary Optimization
【24h】

Decision Diagram Decomposition for Quadratically Constrained Binary Optimization

机译:二次约束二进制优化的决策图分解

获取原文
获取原文并翻译 | 示例

摘要

In recent years the use of decision diagrams within the context of discrete optimization has proliferated. This paper continues this expansion by proposing the use of decision diagrams for modeling and solving binary optimization problems with quadratic constraints. The model proposes the use of multiple decision diagrams to decompose a quadratic matrix so that each individual diagram has provably limited size. The decision diagrams are then linked through channeling constraints to ensure that the solution represented is consistent across the decision diagrams and that the original quadratic constraints are satisfied. The resulting family of decision diagrams are optimized over by a dedicated cutting-plane algorithm akin to Benders decomposition. The approach is general, in that commercial integer programming solvers can readily apply the technique. A thorough experimental evaluation on both benchmark and synthetic instances exhibits that the proposed decision diagram reformulation provides significant improvements over current methods for quadratic constraints in state-of-the-art solvers.
机译:近年来,在离散优化的背景下使用决策图已经增殖。本文通过建议使用决策图来继续使用二次约束来建立模拟和解决二进制优化问题的决策图继续进行这种扩展。该模型提出了使用多个判定图来分解二次矩阵,使得每个单独的图具有可透明的大小。然后通过频道约束链接判定图以确保表示的解决方案在判定图中一致,并且满足原始二次约束。通过专用的切割平面算法优化所得到的判定图,以便弯曲分解。该方法是一般的,因为商业整数编程求解器可以容易地应用该技术。对基准和合成实例的彻底实验评估表明,所提出的决策图重构提供了对最先进的求解器中的二次限制方法的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号