首页> 外文期刊>INFORMS journal on computing >Real-Time Radiation Treatment Planning with Optimality Guarantees via Cluster and Bound Methods
【24h】

Real-Time Radiation Treatment Planning with Optimality Guarantees via Cluster and Bound Methods

机译:实时辐射处理规划,通过集群和绑定方法提供最优性保证

获取原文
获取原文并翻译 | 示例

摘要

Radiation therapy is widely used in cancer treatment; however, plans necessarily involve tradeoffs between tumor coverage and mitigating damage to healthy tissue. Although current hardware can deliver custom-shaped beams from any angle around the patient, choosing (from all possible beams) an optimal set of beams that maximizes tumor coverage while minimizing collateral damage and treatment time is intractable. Furthermore, even though planning algorithms used in practice consider highly restricted sets of candidate beams, the time per run combined with the number of runs required to explore clinical tradeoffs results in planning times of hours to days. We propose a suite of cluster and bound methods that we hypothesize will (1) yield higher-quality plans by optimizing over much (i.e., 100-fold) larger sets of candidate beams, and/or (2) reduce planning time by allowing clinicians to search through candidate plans in real time. Our methods hinge on phrasing the treatment-planning problem as a convex problem. To handle large-scale optimizations, we form and solve compressed approximations to the full problem by clustering beams (i.e., columns of the dose deposition matrix used in the optimization) or voxels (rows of the matrix). Duality theory allows us to bound the error incurred when applying an approximate problem's solution to the full problem. We observe that beam clustering and voxel clustering both yield excellent solutions while enabling a 10- to 200-fold speedup.
机译:放射疗法广泛用于癌症治疗;然而,计划必须涉及肿瘤覆盖率与健康组织损伤之间的权衡。尽管电流硬件可以从患者周围的任何角度提供定制形状的梁,但从所有可能的光束上选择(从所有可能的光束)最佳的一组光束,最大化肿瘤覆盖率,同时最小化侧支损坏和治疗时间是棘手的。此外,即使在实践中使用的规划算法考虑了高度限制的候选光束,也会与探索临床权衡所需的运行数量相结合的时间导致数小时数小时的规划时间。我们提出了一套集群和绑定方法,我们假设(1)通过优化多大(即100倍)较大的候选光束,和/或(2)通过允许临床医生减少规划时间来产生更高质量的计划通过实时搜索候选计划。我们的方法铰接在将治疗计划问题留出作为凸面问题。为了处理大规模的优化,我们通过聚类光束(即优化中使用的剂量沉积矩阵的列)或体素(矩阵的行)来形成并解决完全问题的压缩近似。二元理论允许我们在将近似问题的解决方案应用于完整问题时绑定发生的错误。我们观察到光束聚类和体素聚类,同时可以产生优异的解决方案,同时启用10至200倍的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号