首页> 外文期刊>INFORMS journal on computing >Understanding the Impact of Individual Users' Rating Characteristics on the Predictive Accuracy of Recommender Systems
【24h】

Understanding the Impact of Individual Users' Rating Characteristics on the Predictive Accuracy of Recommender Systems

机译:了解个人用户的评分特征对推荐系统的预测准确性的影响

获取原文
获取原文并翻译 | 示例

摘要

In this study, we investigate how individual users' rating characteristics affect the user-level performance of recommendation algorithms. We measure users' rating characteristics from three perspectives: rating value, rating structure, and neighborhood network embeddedness. We study how these three categories of measures influence the predictive accuracy of popular recommendation algorithms for each user. Our experiments use five real-world data sets with varying characteristics. For each individual user, we estimate the predictive accuracy of three recommendation algorithms. We then apply regression-based models to uncover the relationships between rating characteristics and recommendation performance at the individual user level. Our experimental results show consistent and significant effects of several rating measures on recommendation accuracy. Understanding how rating characteristics affect the recommendation performance at the individual user level has practical implications for the design of recommender systems.
机译:在这项研究中,我们调查了单个用户的评级特征如何影响推荐算法的用户级性能。我们从三个角度衡量用户的评级特征:评级值,评级结构和邻域网络嵌入度。我们研究了这三类措施如何影响每个用户的流行推荐算法的预测准确性。我们的实验使用了五个具有不同特征的真实世界数据集。对于每个用户,我们估计三种推荐算法的预测准确性。然后,我们应用基于回归的模型来揭示各个用户级别的评分特征与推荐效果之间的关系。我们的实验结果表明,几种评级措施对推荐准确性的影响是一致且显着的。了解评级特征如何影响单个用户级别的推荐性能对推荐系统的设计具有实际意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号