首页> 外文期刊>INFORMS journal on computing >Toward Automated Intelligent Manufacturing Systems (AIMS)
【24h】

Toward Automated Intelligent Manufacturing Systems (AIMS)

机译:迈向自动化智能制造系统(AIMS)

获取原文
获取原文并翻译 | 示例

摘要

Information technology (IT) has been the driver of increased productivity in the manufacturing and service sectors, bringing real-time information to decision makers and process owners to improve process behavior and performance. Thus, organizations have invested heavily in training their employees to use IT in a disciplined, scientific way to make process improvements. This has spawned such popular initiatives as Six Sigma, yielding significant returns, but at considerable investment in training in statistical-analysis and decision-making tools. Can aspects of the decision-making process be automated, letting humans do what they do best (create, define, and measure) and machines (e.g., learning machines) do what they do best (analyze)? We propose an automated intelligent manufacturing system (AIMS) for analysis and decision making that mines real-time or historical data, and uses statistical and computational-intelligence algorithms to model and optimize enterprise processes. The algorithms employed involve a regression support vector machine (SVM) for model construction and a genetic algorithm (GA) for model optimization. Performance of AIMS was compared to Six-Sigma-trained teams employing statistical methodologies, such as design of experiments (DOE), to improve a simulated manufacturing operation, a three-stage TV-manufacturing process, where the objectives were to maximize yield, minimize cycle time and its variation, and minimize manufacturing costs, which were affected by conflicting defects and their causes. AIMS generally outperformed the teams on the above criteria, required relatively little data and time to train the SVM, and was easy to use. AIMS could serve as a productivity springboard for enterprises in existing and emergent technologies, such as nanotechnology and biotechnology/life sciences, where environment and miniaturization may make human monitoring and intervention difficult or infeasible.
机译:信息技术(IT)一直是制造业和服务业生产率提高的驱动力,将实时信息带给决策者和流程所有者,以改善流程行为和性能。因此,组织已投入大量资金培训员工,以纪律严明,科学的方式使用IT来改进流程。这催生了诸如“六西格码”之类的颇受欢迎的计划,产生了可观的回报,但在统计分析和决策工具方面的培训却投入了大量资金。决策过程的各个方面是否可以自动化,让人们去做他们最擅长的事情(创建,定义和衡量),而机器(例如学习机)则去做他们最擅长的事情(分析)?我们提出了一种用于挖掘和分析实时或历史数据的自动化智能制造系统(AIMS),并使用统计和计算智能算法对企业流程进行建模和优化。所采用的算法包括用于模型构建的回归支持向量机(SVM)和用于模型优化的遗传算法(GA)。将AIMS的性能与采用统计方法(例如实验设计(DOE))的六西格玛培训团队进行了比较,以改进模拟制造操作,三阶段电视制造过程,其目标是最大程度地提高产量,最小化周期时间及其变化,并最大程度地减少了受冲突缺陷及其原因影响的制造成本。在上述标准上,AIMS通常胜过团队,训练SVM所需的数据和时间相对较少,并且易于使用。 AIMS可以作为企业利用现有技术和新兴技术(例如纳米技术和生物技术/生命科学)的生产力跳板,在这些技术中,环境和小型化可能使人类监测和干预变得困难或不可行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号