首页> 外文期刊>INFORMS journal on computing >Decision-Tree-Based Knowledge Discovery: Single- vs. Multi-Decision-Tree Induction
【24h】

Decision-Tree-Based Knowledge Discovery: Single- vs. Multi-Decision-Tree Induction

机译:基于决策树的知识发现:单决策树与多决策树归纳

获取原文

摘要

One widely used knowledge-discovery technique is a decision-tree inducer that generates classifiers in the form of a single decision tree. As the number of prespecified decision-outcome classes increases, however, the trees so generated often become overly complex with regard to the number of leaves and nodes, and the classification accuracy consequently drops. In contrast, the multi-decision-tree induction (MDTI) approach, which constructs different decision trees for different decision-outcome classes, may reduce rule cardinality, and improve both rule conciseness and classification accuracy over a traditional single-decision tree inducer. This paper analytically and empirically compares the two techniques based on these measures. The analysis and results show that, in some situations, MDTI outperforms the traditional approach in terms of cardinality, conciseness, and classification accuracy of the acquired knowledge structures.
机译:一种广泛使用的知识发现技术是决策树诱导器,它以单个决策树的形式生成分类器。然而,随着预定的决策结果类别的数量增加,如此生成的树在叶子和结点的数量上通常变得过于复杂,因此分类精度下降。相比之下,多决策树归纳(MDTI)方法可以为不同的决策结果类别构建不同的决策树,与传统的单决策树归纳算法相比,可以减少规则基数,并提高规则的简洁性和分类准确性。本文对这些技术进行了分析和经验比较,比较了这两种技术。分析和结果表明,在某些情况下,MDTI在获得的知识结构的基数,简洁性和分类准确性方面优于传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号