首页> 外文期刊>INFORMS journal on computing >A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem
【24h】

A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem

机译:使用边缘装配交叉解决旅行商问题的强大遗传算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a genetic algorithm (GA) for solving the traveling salesman problem (TSP). To construct a powerful GA, we use edge assembly crossover (EAX) and make substantial enhancements to it: (i) localization of EAX together with its efficient implementation and (ii) the use of a local search procedure in EAX to determine good combinations of building blocks of parent solutions for generating even better offspring solutions from very high-quality parent solutions. In addition, we develop (iii) an innovative selection model for maintaining population diversity at a negligible computational cost. Experimental results on well-studied TSP benchmarks demonstrate that the proposed GA outperforms state-of-the-art heuristic algorithms in finding very high-quality solutions on instances with up to 200,000 cities. In contrast to the state-of-the-art TSP heuristics, which are all based on the Lin-Kernighan (LK) algorithm, our GA achieves top performance without using an LK-based algorithm.
机译:本文提出了一种遗传算法(GA),用于解决旅行商问题(TSP)。为了构建功能强大的GA,我们使用边缘组合交叉(EAX)并对其进行了实质性增强:(i)EAX的本地化及其有效实施,以及(ii)在EAX中使用本地搜索过程来确定EAX的良好组合父解决方案的构建块,用于从非常高质量的父解决方案生成更好的后代解决方案。此外,我们开发(iii)创新的选择模型,以可忽略的计算成本维持人口多样性。在经过充分研究的TSP基准上的实验结果表明,在多达200,000个城市的实例上找到非常高质量的解决方案时,拟议的GA优于最新的启发式算法。与全部基于Lin-Kernighan(LK)算法的最新TSP启发式算法相比,我们的GA无需使用基于LK的算法即可获得最佳性能。

著录项

  • 来源
    《INFORMS journal on computing》 |2013年第2期|346-363|共18页
  • 作者单位

    Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan;

    Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    genetic algorithm; traveling salesman; crossover; population diversity;

    机译:遗传算法旅行推销员交叉人口多样性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号