首页> 外文期刊>INFORMS journal on computing >Machine Learning Approaches for Early DRG Classification and Resource Allocation
【24h】

Machine Learning Approaches for Early DRG Classification and Resource Allocation

机译:早期DRG分类和资源分配的机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

Recent research has highlighted the need for upstream planning in healthcare service delivery systems, patient scheduling, and resource allocation in the hospital inpatient setting. This study examines the value of upstream planning within hospital-wide resource allocation decisions based on machine learning (ML) and mixed-integer programming (MIP), focusing on prediction of diagnosis-related groups (DRGs) and the use of these predictions for allocating scarce hospital resources. DRGs are a payment scheme employed at patients' discharge, where the DRG and length of stay determine the revenue that the hospital obtains. We show that early and accurate DRG classification using ML methods, incorporated into an MIP-based resource allocation model, can increase the hospital's contribution margin, the number of admitted patients, and the utilization of resources such as operating rooms and beds. We test these methods on hospital data containing more than 16,000 inpatient records and demonstrate improved DRG classification accuracy as compared to the hospital's current approach. The largest improvements were observed at and before admission, when information such as procedures and diagnoses is typically incomplete, but performance was improved even after a substantial portion of the patient's length of stay, and under multiple scenarios making different assumptions about the available information. Using the improved DRG predictions within our resource allocation model improves contribution margin by 2.9% and the utilization of scarce resources such as operating rooms and beds from 66.3% to 67.3% and from 70.7% to 71.7%, respectively. This enables 9.0% more nonurgent elective patients to be admitted as compared to the baseline.
机译:最近的研究强调了在医疗服务提供系统中进行上游计划,对患者进行日程安排以及在医院住院患者中进行资源分配的需求。这项研究考察了基于机器学习(ML)和混合整数编程(MIP)的医院范围资源分配决策中上游计划的价值,重点是诊断相关组(DRG)的预测以及这些预测在分配中的用途医院资源稀缺。 DRG是一种在患者出院时使用的付款方案,其中DRG和住院时间决定了医院获得的收入。我们显示,使用基于ML方法的早期准确的DRG分类,并结合到基于MIP的资源分配模型中,可以提高医院的贡献率,住院病人的数量以及手术室和病床等资源的利用率。我们在包含16,000多个住院记录的医院数据上测试了这些方法,并证明了与医院当前方法相比,DRG分类准确度提高了。在入院时和入院前观察到最大的改善,这时诸如手术和诊断之类的信息通常是不完整的,但是即使在患者大部分住院时间之后,以及在多种情况下对可用信息做出不同假设的情况下,性能也得到了改善。在我们的资源分配模型中使用改进的DRG预测,可以将贡献率提高2.9%,将手术室和病床等稀缺资源的利用率分别从66.3%提高到67.3%,从70.7%提高到71.7%。与基线相比,这使非紧急选择患者的住院率增加9.0%。

著录项

  • 来源
    《INFORMS journal on computing》 |2015年第4期|718-734|共17页
  • 作者单位

    The H. John Heinz Ⅲ College, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 TUM School of Management, Technische Universitaet Muenchen, 80333 Munich, Germany;

    TUM School of Management, Technische Universitaet Muenchen, 80333 Munich, Germany Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695;

    The H. John Heinz Ⅲ College, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;

    The H. John Heinz Ⅲ College, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    machine learning; diagnosis-related groups; attribute selection; classification; mathematical programming;

    机译:机器学习诊断相关人群;属性选择;分类;数学程序设计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号