首页> 外文期刊>Information Security Technical Report >Bi-directional extreme learning machine for semi-blind watermarking of compressed images
【24h】

Bi-directional extreme learning machine for semi-blind watermarking of compressed images

机译:用于压缩图像半盲水印的双向极限学习机

获取原文
获取原文并翻译 | 示例

摘要

Bi-directional Extreme Learning Machine (B-ELM) is a newly developed single layer feed-forward network capable of fast training with few hidden neurons. It is also reported to show better generalization capability as compared to its old counterpart ELM. In the past, it has never been applied to image processing data-sets and particularly to any of its applications. In this work, B-ELM is successfully used to carry out watermarking of JPEG compressed images by inserting a binary watermark into it. Two invertible activation functions – Sine and Sigmoid are tested in this work. The RMSE is plotted as a function of number of hidden neurons. As observed in case of other applications, this plot indicates that Sigmoid is better placed in comparison to Sine function. The robustness of embedding scheme is examined by applying seven different attacks over signed images. These results prove that the proposed scheme is robust enough against the selected attacks. The computed processing time for embedding and extraction in milliseconds indicates that this scheme is suitable for developing real time watermarking applications for videos.
机译:双向极限学习机(B-ELM)是一种新开发的单层前馈网络,能够以很少的隐藏神经元进行快速训练。据报道,与旧版ELM相比,它具有更好的泛化能力。过去,它从未应用于图像处理数据集,尤其是其任何应用程序。在这项工作中,通过将二进制水印插入JPEG压缩图像,B-ELM被成功地用于对其进行水印处理。这项工作中测试了两个可逆激活函数-正弦和Sigmoid。将RMSE绘制为隐藏神经元数量的函数。如在其他应用程序中观察到的,此图表明与Sine函数相比,Sigmoid的位置更好。通过对签名图像应用七种不同的攻击来检查嵌入方案的鲁棒性。这些结果证明,所提出的方案对于所选攻击具有足够的鲁棒性。计算出来的用于嵌入和提取的处理时间(以毫秒为单位)表明,该方案适用于开发视频的实时水印应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号