首页> 外文期刊>Information Processing & Management >Application of Markov chains in an interactive information retrieval system
【24h】

Application of Markov chains in an interactive information retrieval system

机译:马尔可夫链在交互式信息检索系统中的应用

获取原文
获取原文并翻译 | 示例

摘要

The model of most information retrieval systems (IR) is based on matching an information seeker's expression of need (the query) to a document collection's representation of intellectual content and then presenting the retrieval set as a ranked hierarchical list (Baeza-Yates & Ribeiro-Neto, 1999, p. 28). This model has generated useful retrieval systems, but in the end is lacking essentially because it isolates information seeking behavior of the individual from how the resources are evaluated and applied within a social group, and clouds the user's interpretation of potential resources. While there is a rich literature of browsing, searching, and interface design, this paper proposes a Markov model of information retrieval (IR) that uses transition probabilities to guide information seeking behavior and group information seeking history to weight those probabilities. The whole was implemented in a Java application whose user interface reflects the underlying transition matrix. This paper details a Markov chain driven IR model. The motivation for this approach is based on potential weaknesses in traditional IR from the perspective of group awareness, query chains, and interactive visualization.
机译:大多数信息检索系统(IR)的模型都是基于将信息搜索者的需求表达(查询)与文档集合的知识内容表示相匹配,然后将检索集呈现为排名的分层列表(Baeza-Yates和Ribeiro- Neto,1999年,第28页)。该模型产生了有用的检索系统,但最终根本上缺乏,因为它将个人的信息搜索行为与社会群体中资源的评估和应用方式隔离开来,并且使用户对潜在资源的解释变得模糊。尽管有丰富的浏览,搜索和界面设计文献,但本文提出了一种马尔可夫信息检索(IR)模型,该模型使用过渡概率来指导信息搜索行为,并使用组信息搜索历史来加权这些概率。整个过程是在Java应用程序中实现的,该应用程序的用户界面反映了底层的转换矩阵。本文详细介绍了马尔可夫链驱动的IR模型。从群体意识,查询链和交互式可视化的角度出发,此方法的动机是基于传统IR中的潜在弱点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号