首页> 外文期刊>Information Processing & Management >Genetic programming-based feature learning for question answering
【24h】

Genetic programming-based feature learning for question answering

机译:基于遗传编程的特征学习用于问答

获取原文
获取原文并翻译 | 示例

摘要

Question Answering (QA) systems are developed to answer human questions. In this paper, we have proposed a framework for answering definitional and factoid questions, enriched by machine learning and evolutionary methods and integrated in a web-based QA system. Our main purpose is to build new features by combining state-of-the-art features with arithmetic operators. To accomplish this goal, we have presented a Genetic Programming (GP)-based approach. The exact GP duty is to find the most promising formulas, made by a set of features and operators, which can accurately rank paragraphs, sentences, and words. We have also developed a QA system in order to test the new features. The input of our system is texts of documents retrieved by a search engine. To answer definitional questions, our system performs paragraph ranking and returns the most related paragraph. Moreover, in order to answer factoid questions, the system evaluates sentences of the filtered paragraphs ranked by the previous module of our framework. After this phase, the system extracts one or more words from the ranked sentences based on a set of hand-made patterns and ranks them to find the final answer. We have used Text Retrieval Conference (TREC) QA track questions, web data, and AQUAINT and AQUAINT-2 datasets for training and testing our system. Results show that the learned features can perform a better ranking in comparison with other evaluation formulas.
机译:开发了问答(QA)系统来回答人类的问题。在本文中,我们提出了一个回答定义性和事实性问题的框架,该框架通过机器学习和进化方法得到了丰富,并集成在基于Web的质量保证系统中。我们的主要目的是通过将最新功能与算术运算符相结合来构建新功能。为了实现此目标,我们提出了一种基于遗传编程(GP)的方法。 GP的确切职责是找到由一组功能部件和运算符组成的最有前途的公式,这些公式和运算符可以准确地对段落,句子和单词进行排名。我们还开发了质量检查系统以测试新功能。我们系统的输入是由搜索引擎检索的文档文本。为了回答定义性问题,我们的系统执行段落排名并返回最相关的段落。此外,为了回答事实性问题,系统会评估由我们框架的前一个模块排名的已过滤段落的句子。在此阶段之后,系统会根据一组手工制作的模式从排名句子中提取一个或多个单词,并对它们进行排名以找到最终答案。我们已经使用文本检索会议(TREC)QA跟踪问题,Web数据以及AQUAINT和AQUAINT-2数据集来培训和测试我们的系统。结果表明,与其他评估公式相比,学习的功能可以实现更好的排名。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号