首页> 外文期刊>Information Processing & Management >Expressive signals in social media languages to improve polarity detection
【24h】

Expressive signals in social media languages to improve polarity detection

机译:社交媒体语言中的表达性信号可改善极性检测

获取原文
获取原文并翻译 | 示例

摘要

Social media represents an emerging challenging sector where the natural language expressions of people can be easily reported through blogs and short text messages. This is rapidly creating unique contents of massive dimensions that need to be efficiently and effectively analyzed to create actionable knowledge for decision making processes. A key information that can be grasped from social environments relates to the polarity of text messages. To better capture the sentiment orientation of the messages, several valuable expressive forms could be taken into account. In this paper, three expressive signals - typically used in microblogs -have been explored: (1) adjectives, (2) emoticon, emphatic and onomatopoeic expressions and (3) expressive lengthening. Once a text message has been normalized to better conform social media posts to a canonical language, the considered expressive signals have been used to enrich the feature space and train several baseline and ensemble classifiers aimed at polarity classification. The experimental results show that adjectives are more discriminative and impacting than the other considered expressive signals.
机译:社交媒体是一个新兴的具有挑战性的领域,人们可以通过博客和短消息轻松地报告人们的自然语言表达。这正在迅速创建大量内容的独特内容,需要对其进行有效,有效的分析以为决策流程创建可操作的知识。可以从社交环境中掌握的关键信息与文本消息的极性有关。为了更好地捕捉消息的情感取向,可以考虑几种有价值的表达形式。在本文中,已经探讨了三种表达信号-通常用于微博-(1)形容词,(2)表情符号,强调和拟声表达以及(3)表达延长。一旦对文本消息进行了标准化以使社交媒体帖子更好地符合规范语言,就可以使用考虑的表达信号来丰富功能空间并训练一些针对极性分类的基线和整体分类器。实验结果表明,形容词比其他认为的表达性信号更具区分性和影响力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号