首页> 外文期刊>Information Processing & Management >Multilingual emotion classification using supervised learning:Comparative experiments
【24h】

Multilingual emotion classification using supervised learning:Comparative experiments

机译:使用监督学习的多语言情感分类:比较实验

获取原文
获取原文并翻译 | 示例

摘要

The importance of emotion mining is acknowledged in a wide range of new applications, thus broadening the potential market already proven for opinion mining. However, the lack of resources for languages other than English is even more critical for emotion mining. In this article, we investigate whether Multilingual Sentiment Analysis delivers reliable and effective results when applied to emotions. For this purpose, we developed experiments involving machine translations over corpora originally written in two languages. Our experimental framework for emotion classification assesses variations on (ⅰ) the language of the original text and its translations; (ⅱ) strategies to combine multiple languages to overcome losses due to translation; (ⅲ) options for data pre-processing (tokenization, feature representation and feature selection); and (ⅳ) classification algorithms, including meta-classifiers. The results show that emotion classification performance improve significantly with the use of texts in multiple languages, particularly by adopting a stacking of weak monolingual classifiers. Our study also sheds light into the impacts of data preparation strategies and their combination with classification algorithms, and compares differences between polarity and emotion classification according to the same experimental settings.
机译:情感挖掘的重要性已在众多新应用中得到认可,从而拓宽了业已证明的观点挖掘的潜在市场。但是,缺乏英语以外的其他语言资源对于情感挖掘而言更为重要。在本文中,我们研究了多语言情感分析在应用于情感时是否能提供可靠且有效的结果。为此,我们开发了一些实验,其中涉及对最初用两种语言编写的语料库进行机器翻译。我们用于情感分类的实验框架评估(ⅰ)原始语言及其翻译的语言变化; (ⅱ)结合多种语言以克服翻译带来的损失的策略; (ⅲ)数据预处理的选项(令牌化,特征表示和特征选择); (ⅳ)分类算法,包括元分类器。结果表明,情感分类性能随着使用多种语言的文本而得到显着提高,特别是通过采用弱单语分类符的堆叠。我们的研究还揭示了数据准备策略及其与分类算法结合的影响,并根据相同的实验设置比较了极性和情感分类之间的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号