首页> 外文期刊>Information Processing & Management >Investigating gender fairness of recommendation algorithms in the music domain
【24h】

Investigating gender fairness of recommendation algorithms in the music domain

机译:调查音乐域中推荐算法的性别公平

获取原文
获取原文并翻译 | 示例

摘要

Although recommender systems (RSs) play a crucial role in our society, previous studies have revealed that the performance of RSs may considerably differ between groups of individuals with different characteristics or from different demographics. In this case, a RS is considered to be unfair when it does not perform equally well for different groups of users. Considering the importance of RSs in the distribution and consumption of musical content worldwide, a careful evaluation of fairness in the context of music RSs is crucial. To this end, we first introduce LFM-2b, a novel large-scale real-world dataset of music listening records, comprising a subset to investigate bias of RSs regarding users' demographics. We then define a notion of fairness based on the performance gap of a RS between the users with different demographics, and evaluate a variety of collaborative filtering algorithms in terms of accuracy and beyond-accuracy metrics to explore the fairness in the RS results toward a specific gender group. We observe the existence of significant discrepancies (unfairness) between the performance of algorithms across male and female user groups. Based on these discrepancies, we explore to what extent recommender algorithms lead to intensifying the underlying population bias in the final results. We also study the effect of a resampling strategy, commonly used as debiasing method , which yields slight improvements in the fairness measures of various algorithms while maintaining their accuracy and beyond-accuracy performance.
机译:虽然推荐系统(RSS)在我们的社会中发挥着至关重要的作用,但之前的研究表明,RSS的性能可能在具有不同特征或不同人口统计学的个人群体之间存在显着不同。在这种情况下,当对于不同的用户组不同样良好地表现出时,RS被认为是不公平的。考虑到RSS在全球音乐内容分配和消费的重要性,仔细评估音乐RSS背景下的公平性至关重要。为此,我们首先介绍了LFM-2B,这是一个新的音乐聆听记录的大型现实世界数据集,包括调查关于用户人口统计数据的RS的偏差的子集。然后,我们根据具有不同人口统计数据的用户之间的RS的性能差距来定义公平的概念,并在准确性和超越准确性度量方面评估各种协作过滤算法,以探索RS的公平导致特定的性别组。我们遵守男性和女性用户组算法性能之间存在显着差异(不公平)的存在。根据这些差异,我们探讨了推荐算法在多大程度上导致在最终结果中加强潜在的人口偏见。我们还研究了重采样策略的效果,通常用作脱叠方法,这在各种算法的公平测量中产生了轻微的改进,同时保持其准确性和超越准确性。

著录项

  • 来源
    《Information Processing & Management》 |2021年第5期|102666.1-102666.27|共27页
  • 作者单位

    Johannes Kepler University Lira Institute of Computational Perception Multimedia Mining and Search Group Altenberger Strasse 69 4040 Linz Austria Linz Institute of Technology AI Lab Human-centered AI Group Altenberger Strasse 69 4040 Lira Austria;

    Johannes Kepler University Lira Institute of Computational Perception Multimedia Mining and Search Group Altenberger Strasse 69 4040 Linz Austria Linz Institute of Technology AI Lab Human-centered AI Group Altenberger Strasse 69 4040 Lira Austria;

    Johannes Kepler University Lira Institute of Computational Perception Multimedia Mining and Search Group Altenberger Strasse 69 4040 Linz Austria Linz Institute of Technology AI Lab Human-centered AI Group Altenberger Strasse 69 4040 Lira Austria;

    Johannes Kepler University Lira Institute of Computational Perception Multimedia Mining and Search Group Altenberger Strasse 69 4040 Linz Austria;

    Johannes Kepler University Lira Institute of Computational Perception Multimedia Mining and Search Group Altenberger Strasse 69 4040 Linz Austria Linz Institute of Technology AI Lab Human-centered AI Group Altenberger Strasse 69 4040 Lira Austria;

    Johannes Kepler University Lira Institute of Computational Perception Multimedia Mining and Search Group Altenberger Strasse 69 4040 Linz Austria Linz Institute of Technology AI Lab Human-centered AI Group Altenberger Strasse 69 4040 Lira Austria;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender systems; Music; Bias; Neural networks; Demographics;

    机译:推荐系统;音乐;偏见;神经网络;人口统计学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号