首页> 外文期刊>Information Processing & Management >Co-LSTM: Convolutional LSTM model for sentiment analysis social big data
【24h】

Co-LSTM: Convolutional LSTM model for sentiment analysis social big data

机译:CO-LSTM:情绪分析的卷积LSTM模型社会大数据

获取原文
获取原文并翻译 | 示例

摘要

Analysis of consumer reviews posted on social media is found to be essential for several business applications. Consumer reviews posted in social media are increasing at an exponential rate both in terms of number and relevance, which leads to big data. In this paper, a hybrid approach of two deep learning architectures namely Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) (RNN with memory) is suggested for sentiment classification of reviews posted at diverse domains. Deep convolutional networks have been highly effective in local feature selection, while recurrent networks (LSTM) often yield good results in the sequential analysis of a long text. The proposed Co-LSTM model is mainly aimed at two objectives in sentiment analysis. First, it is highly adaptable in examining big social data, keeping scalability in mind, and secondly, unlike the conventional machine learning approaches, it is free from any particular domain. The experiment has been carried out on four review datasets from diverse domains to train the model which can handle all kinds of dependencies that usually arises in a post. The experimental results show that the proposed ensemble model outperforms other machine learning approaches in terms of accuracy and other parameters.
机译:发现社交媒体上发布的消费者评论分析对于几个业务应用是必不可少的。在社交媒体中发布的消费者评论在数量和相关性方面以指数率增加,这导致大数据。在本文中,两个深度学习架构的混合方法即卷积神经网络(CNN)和长短短期记忆(LSTM)(LSTM)(RNN与存储器)被提出了在不同领域发布的评论评论的思维分类。深度卷积网络在本地特征选择中非常有效,而经常性网络(LSTM)通常会在长文本的顺序分析中产生良好的结果。所提出的CO-LSTM模型主要针对情绪分析的两个目标。首先,在检查大社交数据,保持可扩展性的高度适应,其次是与传统的机器学习方法不同,它没有任何特定域。该实验已经在四个审查数据集中进行了来自不同域的四个审查数据集,以培训可以处理通常在帖子中出现的各种依赖性的模型。实验结果表明,该集合模型在准确性和其他参数方面优于其他机器学习方法。

著录项

  • 来源
    《Information Processing & Management》 |2021年第1期|102435.1-102435.18|共18页
  • 作者单位

    Department of Computer Science & Engineering National Institute of Technology Rourkela 769008 India;

    Department of Information and Communication Technology F. M. University Balasore Odisha India;

    Department of Computer Science & Engineering National Institute of Technology Rourkela 769008 India;

    Department of Electrical and Information Engineering Covenant University Ota 2023 Nigeria Department of Computer Engineering Atilim University Ankara Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Big data; Sentiment analysis; Word embedding; RNN; CNN; LSTM;

    机译:深度学习;大数据;情绪分析;嵌入词;rnn;CNN;LSTM.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号