首页> 外文期刊>Information Processing & Management >Deep ranking based cost-sensitive multi-label learning for distant supervision relation extraction
【24h】

Deep ranking based cost-sensitive multi-label learning for distant supervision relation extraction

机译:基于深度排名的远程监督关系的成本敏感多标签学习

获取原文
获取原文并翻译 | 示例

摘要

Knowledge base provides a potential way to improve the intelligence of information retrieval (IR) systems, for that knowledge base has numerous relations between entities which can help the IR systems to conduct inference from one entity to another entity. Relation extraction is one of the fundamental techniques to construct a knowledge base. Distant supervision is a semi-supervised learning method for relation extraction which learns with labeled and unlabeled data. However, this approach suffers the problem of relation overlapping in which one entity tuple may have multiple relation facts. We believe that relation types can have latent connections, which we call class ties, and can be exploited to enhance relation extraction. However, this property between relation classes has not been fully explored before. In this paper, to exploit class ties between relations to improve relation extraction, we propose a general ranking based multi-label learning framework combined with convolutional neural networks, in which ranking based loss functions with regularization technique are introduced to learn the latent connections between relations. Furthermore, to deal with the problem of class imbalance in distant supervision relation extraction, we further adopt cost-sensitive learning to rescale the costs from the positive and negative labels. Extensive experiments on a widely used dataset show the effectiveness of our model to exploit class ties and to relieve class imbalance problem. Distant supervision; Relation extraction; Class ties; Class imbalance; Multi-label learning; Cost-sensitive learning; Deep ranking
机译:知识库提供了改善信息检索(IR)系统智能的潜在方法,因为知识库有许多实体之间的关系,可以帮助IR系统将推断从一个实体传授给另一个实体。关系提取是构建知识库的基本技巧之一。远程监督是一个半监督的关于关系提取的学习方法,其与标签和未标记的数据学习。然而,这种方法遭受了关系重叠的问题,其中一个实体元组可能具有多个关系事实。我们认为,关系类型可以具有潜在的连接,我们呼叫类联系,并且可以利用来增强关系提取。但是,在以前没有完全探索关系类之间的这种财产。在本文中,为了利用关系之间的阶级联系来改进关系提取,我们提出了一种与卷积神经网络相结合的一般排名的多标签学习框架,其中引入了基于排名的损耗功能,以了解关系之间的潜在连接。此外,为了处理遥感监督关系中的类别不平衡问题,我们进一步采用了成本敏感的学习,以重新归类为正负标签的成本。对广泛使用的数据集的广泛实验显示了我们模型的有效性,以利用类联系并缓解类别不平衡问题。遥远的监督;关系提取;班级;班级不平衡;多标签学习;成本敏感的学习;深度排名

著录项

  • 来源
    《Information Processing & Management》 |2020年第6期|102096.1-102096.15|共15页
  • 作者

    Hai Yea; Zhunchen Luo;

  • 作者单位

    School of Computer Science and Engineering Beihang University Beijing China;

    Information Research Center of Military Science Beijing China;

    PLA Academy of Military Science Beijing China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号