首页> 外文期刊>Information Processing & Management >Exploring the effect of heuristic factors on the popularity of user-curated 'Best places to visit' recommendations in an online travel community
【24h】

Exploring the effect of heuristic factors on the popularity of user-curated 'Best places to visit' recommendations in an online travel community

机译:探索启发式因素对在线旅行社区中用户策划的“最佳游览地点”建议的受欢迎程度的影响

获取原文
获取原文并翻译 | 示例

摘要

In online travel communities, 'Top-K best places to visit' recommendations are gaining more attention from travelers due to their ubiquitous access to the Internet, but little empirical effort has been made to investigate what factors lead to the popularity of user-curated 'best places to visit (BP2V)' recommendations. This research therefore aims to identify and validate the heuristic factors affecting the popularity of BP2V recommendations. Based on the heuristic-systematic model (HSM) of persuasion, we derive recommender-related (i.e., recommender's identity disclosure, reputation, experience, and location of residency) and recommendation-related (i.e., number of places recommended, helpfulness rating, number of comments added, and length of recommendation) heuristic characteristics of BP2V recommendations and investigate their impact on recommendation popularity. In addition, this study examines the moderating effect of destination category (i.e., attractions, food, shopping, and activities) on the relationship between heuristic characteristics and the popularity of BP2V recommendations. Our empirical results, which were based on 565 'best places to visit in the U.S.' recommendation postings from Qyer.com , a major online travel community in China, suggest that recommender's identity disclosure, reputation, number of places recommended, helpfulness rating, and length of recommendation are positively associated with recommendation popularity. We also found that the relationships between heuristic factors and the popularity of BP2V recommendations are contingent on destination category. This study will contribute to the body of knowledge on online travel communities and HSM and provide valuable implications for general travelers and managers in the tourism and hospitality industry.
机译:在在线旅游社区中,“无处不在的Top-K最佳游览地”建议因其无处不在的互联网访问而受到越来越多的旅行者的关注,但是几乎没有任何经验性的研究来研究哪些因素导致了用户策划的“最佳景点(BP2V)的建议。因此,本研究旨在确定和验证影响BP2V建议受欢迎程度的启发式因素。基于说服的启发式系统模型(HSM),我们得出与推荐者相关的信息(例如,推荐人的身份公开,声誉,经验和居住地)和与推荐相关的信息(例如,推荐的地点数,帮助等级,人数) (添加的注释数和建议的长度)BP2V建议的启发式特征,并调查其对建议受欢迎程度的影响。此外,本研究考察了目的地类别(即景点,美食,购物和活动)对启发式特征与BP2V建议的受欢迎程度之间的关系的调节作用。我们的实验结果基于565个“美国最佳游览地”来自中国主要在线旅游社区Qyer.com的推荐帖子显示,推荐者的身份披露,声誉,推荐的地点数,帮助等级和推荐时间与推荐受欢迎程度呈正相关。我们还发现,启发式因素与BP2V建议的受欢迎程度之间的关系取决于目的地类别。这项研究将有助于增强在线旅游社区和HSM的知识体系,并为旅游和酒店业的一般旅行者和管理人员提供宝贵的启示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号