首页> 外文期刊>Information Processing & Management >Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion
【24h】

Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion

机译:基于多特征融合的基于深度学习的评估文本情感分类

获取原文
获取原文并翻译 | 示例

摘要

Sentiment analysis concerns the study of opinions expressed in a text. Due to the huge amount of reviews, sentiment analysis plays a basic role to extract significant information and overall sentiment orientation of reviews. In this paper, we present a deep-learning-based method to classify a user's opinion expressed in reviews (called RNSA).To the best of our knowledge, a deep learning-based method in which a unified feature set which is representative of word embedding, sentiment knowledge, sentiment shifter rules, statistical and linguistic knowledge, has not been thoroughly studied for a sentiment analysis. The RNSA employs the Recurrent Neural Network (FINN) which is composed by Long Short-Term Memory (LSTM) to take advantage of sequential processing and overcome several flaws in traditional methods, where order and information about the word are vanished. Furthermore, it uses sentiment knowledge, sentiment shifter rules and multiple strategies to overcome the following drawbacks: words with similar semantic context but opposite sentiment polarity; contextual polarity; sentence types; word coverage limit of an individual lexicon; word sense variations. To verify the effectiveness of our work, we conduct sentence-level sentiment classification on large-scale review datasets. We obtained encouraging result. Experimental results show that (1) feature vectors in terms of (a) statistical, linguistic and sentiment knowledge, (b) sentiment shifter rules and (c) word-embedding can improve the classification accuracy of sentence-level sentiment analysis; (2) our method that learns from this unified feature set can obtain significant performance than one that learns from a feature subset; (3) our neural model yields superior performance improvements in comparison with other well-known approaches in the literature.
机译:情感分析涉及对文本表达的观点的研究。由于评论数量巨大,因此情感分析在提取重要信息和评论的总体情感取向方面起着基本作用。在本文中,我们提出了一种基于深度学习的方法来对评论中表达的用户意见进行分类(称为RNSA)。就我们所知,这是一种基于深度学习的方法,其中具有代表单词的统一特征集嵌入,情感知识,情感转移规则,统计和语言知识尚未进行深入的情感分析研究。 RNSA使用由长期短期记忆(LSTM)组成的递归神经网络(FINN),以利用顺序处理的优势并克服传统方法中字的顺序和信息消失的一些缺陷。此外,它利用情感知识,情感转移规则和多种策略来克服以下缺点:语义上下文相似但极性相反的单词;上下文极性;句子类型;单个词典的单词覆盖范围限制;词义变化。为了验证我们工作的有效性,我们对大型评论数据集进行句子级别的情感分类。我们取得了令人鼓舞的结果。实验结果表明:(1)从(a)统计,语言和情感知识,(b)情感转移规则和(c)词嵌入方面的特征向量可以提高句子级情感分析的分类准确性; (2)与从特征子集中学习的方法相比,我们从这种统一的特征集中学习的方法可以获得显着的性能; (3)与文献中其他众所周知的方法相比,我们的神经模型可产生更好的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号