首页> 外文期刊>Information Processing & Management >Investigating and predicting online food recipe upload behavior
【24h】

Investigating and predicting online food recipe upload behavior

机译:调查和预测在线食品食谱上传行为

获取原文
获取原文并翻译 | 示例

摘要

Studying online food behavior has recently become an active field of research. While there is a growing body of studies that investigate, for example, how online recipes are consumed, in the form of views or ratings, little effort has been devoted yet to understand how they are created. In order to contribute to this lack of knowledge in the area, we present in this paper the results of a large-scale study of nearly 200k users posting over 400k recipes in the online recipe platform Kochbar.de. The main objective of this study is (i) to reveal to what extent recipe upload patterns can be explained by socio-demographic features and (ii) to what extent they can be predicted. To do so, we investigate the utility of several features such as user history, social connections of the users, temporal aspects as well as geographic embedding of the users. Statistical analysis confirms that recipe uploads can be explained by socio-demographic features. Extensive simulations show that among all features investigated, the social signal, in the form of friendship connections to other users, appears to be the strongest one and henceforth is the best to predict what type of recipe will be uploaded and what ingredients will be used in the future. The research conducted in this work contributes to a better understanding in online food behavior and is relevant for researchers working on online social information systems and engineers interested in predictive modeling and recommender systems.
机译:研究在线食物行为最近已成为活跃的研究领域。尽管有越来越多的研究以例如视图或等级的形式来研究如何消费在线食谱,但人们几乎没有花多少精力来了解它们是如何创建的。为了弥补这一领域的知识不足,我们在本文中提供了对近20万用户在在线食谱平台Kochbar.de上发布40万食谱的大规模研究的结果。这项研究的主要目的是(i)揭示在何种程度上可以通过社会人口统计学特征来解释配方上传模式,以及(ii)在何种程度上可以预测它们。为此,我们研究了多种功能的实用性,例如用户历史记录,用户的社交关系,时间方面以及用户的地理嵌入。统计分析证实,配方上传可以通过社会人口统计特征来解释。广泛的模拟显示,在所有调查的功能中,以与其他用户之间的友谊联系的形式出现的社交信号似乎是最强烈的一种,从此以后最好地预测将上载哪种食谱以及将使用哪种配料未来。这项工作进行的研究有助于更好地了解在线食物行为,并且与从事在线社会信息系统的研究人员以及对预测模型和推荐系统感兴趣的工程师相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号