首页> 外文期刊>Information and computation >Bin packing with controllable item sizes
【24h】

Bin packing with controllable item sizes

机译:可控制物品大小的垃圾箱包装

获取原文
获取原文并翻译 | 示例

摘要

We consider a natural resource allocation problem in which we are given a set of items, where each item has a list of pairs associated with it. Each pair is a configuration of an allowed size for this item, together with a nonnegative penalty, and an item can be packed using any configuration in its list. The goal is to select a configuration for each item so that the number of unit bins needed to pack the sizes plus the sum of penalties is minimized. This problem has applications in operating systems, bandwidth allocation, and discrete time-cost tradeoff planning problems.rnFor the offline version of the problem we design an augmented asymptotic PTAS. That is, an asymptotic approximation scheme that uses bins of size slightly larger than 1. We further consider the online bounded space variant, where only a constant number of bins can be open simultaneously. We design a sequence of algorithms, where the sequence of their competitive ratios tends to the best possible asymptotic competitive ratio. Finally, we study the bin covering problem, in which a bin is covered if the sum of sizes allocated to it is at least 1. In this setting, penalties are interpreted as profits and the goal is to maximize the sum of profits plus the number of covered bins. We design an algorithm of best possible competitive ratio, which is 2. We generalize our results for online algorithms and unit sized bins to the case of variable sized bins, where there may be several distinct sizes of bins available for packing or covering, and get that the competitive ratios are again the same as for the more standard online problems.
机译:我们考虑一个自然资源分配问题,在该问题中,我们得到一组项目,其中每个项目都有与之相关的对的列表。每对都是该商品允许尺寸的配置以及非负罚分,并且可以使用其列表中的任何配置来打包商品。目的是为每个项目选择一种配置,以使包装尺寸所需的单位垃圾箱数量与罚款总和最小化。该问题在操作系统,带宽分配和离散的时间成本权衡规划问题中都有应用。对于该问题的离线版本,我们设计了一种渐近渐近PTAS。也就是说,使用大小略大于1的bin的渐近近似方案。我们进一步考虑在线有界空间变体,其中只能同时打开恒定数量的bin。我们设计了一系列算法,其中它们的竞争比率的序列趋于最佳的渐近竞争比率。最后,我们研究bin覆盖问题,如果分配给它的大小之和至少为1,则覆盖bin。在这种情况下,惩罚被解释为利润,目标是最大化利润之和加数字盖垃圾桶。我们设计了一种可能的最佳竞争比率算法,即2。我们将在线算法和单位大小的垃圾箱的结果推广到可变大小的垃圾箱的情况下,其中可能有几种不同大小的垃圾箱可用于包装或覆盖,然后得到竞争率再次与更标准的在线问题相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号