首页> 外文期刊>Information and computation >The complexity of approximating bounded-degree Boolean #CSP
【24h】

The complexity of approximating bounded-degree Boolean #CSP

机译:逼近有限度布尔值#CSP的复杂性

获取原文
获取原文并翻译 | 示例

摘要

The degree of a CSP instance is the maximum number of times that any variable appears in the scopes of constraints. We consider the approximate counting problem for Boolean CSP with bounded-degree instances, for constraint languages containing the two unary constant relations (0} and {1}. When the maximum allowed degree is large enough (at least 6) we obtain a complete classification of the complexity of this problem. It is exactly solvable in polynomial time if every relation in the constraint language is affine. It is equivalent to the problem of approximately counting independent sets in bipartite graphs if every relation can be expressed as conjunctions of {0), |1) and binary implication. Otherwise, there is no FPRAS unless NP = RP. For lower degree bounds, additional cases arise, where the complexity is related to the complexity of approximately counting independent sets in hypergraphs.
机译:CSP实例的程度是任何变量出现在约束范围内的最大次数。我们考虑具有约束度实例的布尔CSP的近似计数问题,对于包含两个一元常数关系(0}和{1}的约束语言,当最大允许度足够大(至少6)时,我们可以获得完整的分类如果约束语言中的每个关系都是仿射的,则可以在多项式时间内完全解决;如果每个关系都可以表示为{0}的连接,则相当于在二部图中近似计算独立集的问题。 ,| 1)和二进制含义。否则,除非NP = RP,否则没有FPRAS。对于较低的度数边界,还会出现其他情况,其中复杂度与对超图中的独立集合进行近似计数的复杂度有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号