首页> 外文会议>Combinatorial optimization and applications >A Trichotomy Theorem for the Approximate Counting of Complex-Weighted Bounded-Degree Boolean CSPs
【24h】

A Trichotomy Theorem for the Approximate Counting of Complex-Weighted Bounded-Degree Boolean CSPs

机译:复杂加权有界布尔CSP近似计数的三分法定理

获取原文
获取原文并翻译 | 示例

摘要

We determine the complexity of approximate counting of the total weight of assignments for complex-weighted Boolean constraint satisfaction problems (or CSPs), particularly, when degrees of instances are bounded from above by a given constant, provided that all arity-1 (or unary) constraints are freely available. All degree-1 counting CSPs are solvable in polynomial time. When the degree is more than 2, we present a trichotomy theorem that classifies all bounded-degree counting CSPs into only three categories. This classification extends to complex-weighted problems an earlier result on the complexity of the approximate counting of bounded-degree unweighted Boolean CSPs. The framework of the proof of our trichotomy theorem is based on Cai's theory of signatures used for holographic algorithms. For the degree-2 problems, we show that they are as hard to approximate as complex Holant problems.
机译:我们确定复杂加权布尔约束满足问题(或CSP)的分配总权重的近似计数的复杂性,特别是当实例度从上方受给定常数限制时,条件是所有arity-1(或一元) )约束可免费获得。所有1级计数CSP都可以在多项式时间内求解。当度数大于2时,我们提出一个三分法定理,将所有有限度计数的CSP分为三类。此分类扩展到复杂加权问题,这是对有限度未加权布尔CSP进行近似计数的复杂性的早期结果。我们的三分定理证明的框架是基于用于全息算法的蔡氏签名理论。对于2级问题,我们证明了它们与复杂的Holant问题一样难以近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号