首页> 外文期刊>Information and computation >The undecidability of type related problems in the type-free style System F with finitely stratified polymorphic types
【24h】

The undecidability of type related problems in the type-free style System F with finitely stratified polymorphic types

机译:具有有限分层多态类型的无类型样式系统F中类型相关问题的不确定性

获取原文
获取原文并翻译 | 示例

摘要

We consider here a number of variations on System F that are predicative second-order systems whose terms are intermediate between the Curry style and the Church style. As in the Church style,the terms we deal with here contain the information on where universal quantifier elimination and introduction in the type inference process must take place. However,they omit the information on what types are involved in the rules,which is similar to Curry forms. This can be viewed as a version of the partial type reconstruction problem considered by Boehm and Pfenning in which type erasure is done in a systematic way. In this paper we prove the undecidability of the type checking,type inference,and typability problems for the system. This demonstrates that the reason for undecidability is not the absence of the information where the second-order rules should be applied but the actual shape of the polymorphic types to be used in the derivation. Moreover,the proof works for the predicative version of the system with finitely stratified polymorphic types. The result includes bounds on the Leivant levels of types used in the instances leading to undecidability.
机译:在这里,我们考虑系统F的许多变体,它们是谓词二阶系统,其用语介于咖喱风格和教堂风格之间。就像教堂风格一样,我们在此使用的术语包含有关在类型推断过程中必须在何处进行通用量词消除和引入的信息。但是,它们忽略了规则中涉及哪种类型的信息,这与Curry表格相似。这可以看作是Boehm和Pfenning考虑的部分类型重构问题的一种形式,其中系统地进行类型擦除。本文证明了系统的类型检查,类型推断和可键入性问题的不确定性。这表明不确定性的原因不是缺少应应用二阶规则的信息,而是要在推导中使用的多态类型的实际形状。此外,证明适用于具有有限分层多态类型的系统的谓词版本。结果包括在实例中使用的莱万特类型的界限,导致不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号