首页> 外文期刊>Information and computation >A generalization of Spira's theorem and circuits with small segregators or separators
【24h】

A generalization of Spira's theorem and circuits with small segregators or separators

机译:Spira定理和带有小隔离符或分隔符的电路的推广

获取原文
获取原文并翻译 | 示例

摘要

Spira showed that any Boolean formula of size s can be simulated in depth O(logs). We generalize Spira's theorem and show that any Boolean circuit of size s with segregators (or separators) of size f(s) can be simulated in depth O(f(s) logs). This improves and generalizes a simulation of polynomial-size Boolean circuits of constant treewidth k in depth O(k~2 log n) by Jansen and Sarma. Our results imply that the class of languages computed by non-uniform families of polynomial-size circuits with constant size segregators equals non-uniform NC. As a corollary, we show that the Boolean Grcuit Value problem for circuits with constant size segregators is in deterministic SPACE(log~2 n). Our results also imply that the Planar Circuit Value problem, which is known to be P-Complete, is in SPACE(n~(1/2)log n); and that the Layered Circuit Value and Synchronous Circuit Value problems, which are both P-complete, are in SPKE(n~(1/2)).
机译:Spira表明,可以在深度O(logs)中模拟任何大小为s的布尔公式。我们推广了斯皮拉定理,并证明了可以在深度O(f(s)logs)中模拟任何大小为s且具有大小为f(s)的分隔符(或分隔符)的布尔电路。这改善并归纳了Jansen和Sarma对深度为O(k〜2 log n)的恒定树宽k的多项式大小布尔电路的仿真。我们的结果表明,由具有固定大小的分隔符的多项式大小的电路的非均匀族计算的语言类别等于非均匀NC。作为推论,我们证明了具有恒定尺寸隔离子的电路的布尔Grcuit值问题在确定性SPACE(log〜2 n)中。我们的结果还暗示,平面电路值问题(称为P完全)在SPACE(n〜(1/2)log n)中;都是P完成的分层电路值和同步电路值问题在SPKE(n〜(1/2))中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号