首页> 外文期刊>Industrial Informatics, IEEE Transactions on >Hybrid Bacterial Foraging Optimization Strategy for Automated Experimental Control Design in Electrical Drives
【24h】

Hybrid Bacterial Foraging Optimization Strategy for Automated Experimental Control Design in Electrical Drives

机译:电力驱动中自动实验控制设计的混合细菌觅食优化策略

获取原文
获取原文并翻译 | 示例

摘要

This paper explores the automated experimental control design for variable speed drives using a novel heuristic optimization algorithm. A hybrid approach, which combines desirable characteristics of two of the most widely used biologically-inspired heuristic algorithms, the genetic algorithms (GAs) and the bacterial foraging (BF) algorithms, is studied and developed in this paper. Both the structures and parameters of digital speed controllers are optimized experimentally and directly on the drive while it is subject to different types of mechanical load; the dynamics of these load profiles are generated using a programmable load emulator. The proposed hybrid bacterial foraging (HBF) algorithm is evaluated, for the purpose of control optimization for electric drives, against GA and BF, and their performances are compared and contrasted.
机译:本文探索了一种使用新型启发式优化算法的变速驱动器自动实验控制设计。本文研究并开发了一种混合方法,该方法结合了两种最广泛使用的生物学启发式启发式算法,遗传算法(GAs)和细菌觅食(BF)算法的理想特性。数字式速度控制器的结构和参数都在实验上直接优化,并且在驱动器上承受不同类型的机械负载。这些负载曲线的动态是使用可编程负载仿真器生成的。为了针对GA和BF对电力驱动进行控制优化,对提出的混合细菌觅食(HBF)算法进行了评估,并对它们的性能进行了比较和对比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号