首页> 中文期刊> 《计算机工程与应用》 >混合粒子群和改进细菌觅食的不平衡数据分类

混合粒子群和改进细菌觅食的不平衡数据分类

     

摘要

针对细菌觅食优化(Bacterial Foraging Optimization,BFO)算法易陷入局部最优的缺点,提出了混合粒子群优化(Particle Swarm Optimization,PSO)算法与改进的细菌觅食优化(Improved BFO)算法应用于不平衡数据的分类。使用三个数据集测试所提算法的性能,其一是卵巢癌微阵列真实数据,另两个来自UCI数据库的垃圾电子邮件数据最优集和动物园数据集。采用边界合成少数过采样技术(Borderline-SMOTE)和Tomek Link对不平衡数据进行预处理,利用所提算法对不平衡数据进行分类。在改进细菌觅食优化算法的过程中,对趋化过程进行改进,采用粒子群优化算法先进行搜索,将粒子作为细菌进行处理,提高了细菌觅食优化的全局搜索能力。改进复制操作过程,提高优胜劣汰的选择标准。改进迁徙操作过程,防止种群陷入局部最优,防止进化停滞。仿真结果表明,所提算法分类准确度优于现有方法。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号