首页> 外文期刊>Industrial Informatics, IEEE Transactions on >Advanced Pattern Discovery-based Fuzzy Classification Method for Power System Dynamic Security Assessment
【24h】

Advanced Pattern Discovery-based Fuzzy Classification Method for Power System Dynamic Security Assessment

机译:基于高级模式发现的电力系统动态安全评估模糊分类方法

获取原文
获取原文并翻译 | 示例

摘要

Dynamic security assessment (DSA) is an important issue in modern power system security analysis. This paper proposes a novel pattern discovery (PD)-based fuzzy classification scheme for the DSA. First, the PD algorithm is improved by integrating the proposed centroid deviation analysis technique and the prior knowledge of the training data set. This improvement can enhance the performance when it is applied to extract the patterns of data from a training data set. Secondly, based on the results of the improved PD algorithm, a fuzzy logic-based classification method is developed to predict the security index of a given power system operating point. In addition, the proposed scheme is tested on the IEEE 50-machine system and is compared with other state-of-the-art classification techniques. The comparison demonstrates that the proposed model is more effective in the DSA of a power system.
机译:动态安全评估(DSA)是现代电力系统安全分析中的重要问题。本文提出了一种新颖的基于模式发现(PD)的DSA模糊分类方案。首先,通过整合提出的质心偏差分析技术和训练数据集的先验知识来改进PD算法。当应用于从训练数据集中提取数据模式时,此改进可以增强性能。其次,基于改进的局部放电算法的结果,开发了一种基于模糊逻辑的分类方法来预测给定电力系统工作点的安全指标。此外,该提议的方案在IEEE 50机器系统上进行了测试,并与其他最新的分类技术进行了比较。比较表明,所提出的模型在电力系统的DSA中更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号