首页> 外文期刊>IEEE transactions on industrial informatics >Support Tool for the Combined Software/Hardware Design of On-Chip ELM Training for SLFF Neural Networks
【24h】

Support Tool for the Combined Software/Hardware Design of On-Chip ELM Training for SLFF Neural Networks

机译:用于SLFF神经网络的芯片上ELM培训的组合软件/硬件设计的支持工具

获取原文
获取原文并翻译 | 示例

摘要

Typically, hardware implemented neural networks are trained before implementation. Extreme learning machine (ELM) is a noniterative training method for single-layer feed-forward (SLFF) neural networks well suited for hardware implementation. It provides fixed-time learning and simplifies retraining of a neural network once implemented, which is very important in applications demanding on-chip training. This study proposes the data flow of a software support tool in the design process of a hardware implementation of on-chip ELM learning for SLFF neural networks. The software tool allows the user to obtain the optimal definition of functional and hardware parameters for any application, and enables the user to interact throughout the design process. Combining in a transparent way for the user, simulation and Xilinx synthesis tools, the tool recommends the optimal configuration, generating, finally, a synthesizable IP-core. As application, the field-programmable gate array implementation for real-time detection of brain areas in electrode positioning during a deep brain stimulation surgery is described. The generated IP-core can execute a peak of 95 ELM trainings per second on a low-cost Spartan 6 device, making possible its real-time use in this application.
机译:通常,在实施之前先对硬件实施的神经网络进行培训。极限学习机(ELM)是用于单层前馈(SLFF)神经网络的非迭代训练方法,非常适合硬件实现。它提供了固定时间的学习,并简化了一旦实现的神经网络的再培训,这在需要片上培训的应用中非常重要。这项研究提出了在SLFF神经网络的片上ELM学习的硬件实现的设计过程中,软件支持工具的数据流。该软件工具允许用户为任何应用程序获得功能和硬件参数的最佳定义,并使用户可以在整个设计过程中进行交互。该工具以透明的方式为用户,仿真和Xilinx综合工具相结合,推荐了最佳配置,并最终生成了可综合的IP核。作为应用,描述了用于在深部脑刺激手术期间实时检测电极位置中的大脑区域的现场可编程门阵列实施方案。生成的IP核可在低成本Spartan 6设备上每秒执行95次ELM训练的峰值,从而使其可以在该应用程序中实时使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号