首页> 外文期刊>IEEE transactions on industrial informatics >IoT-Based Techniques for Online M2M-Interactive Itemized Data Registration and Offline Information Traceability in a Digital Manufacturing System
【24h】

IoT-Based Techniques for Online M2M-Interactive Itemized Data Registration and Offline Information Traceability in a Digital Manufacturing System

机译:数字制造系统中基于IoT的在线M2M交互式逐项数据注册和离线信息可追溯性技术

获取原文
获取原文并翻译 | 示例

摘要

The integration of internet-of-things (IoT) technologies in the industry benefits digital manufacturing applications by allowing ubiquitous interaction and collaborative automation between machines. Online data collection and data interaction are critical for real-time decision making and machine collaborations. However, due to the specificity of digital manufacturing applications, the technical gap between IoT techniques and practical machine operation could hinder the efficient data interactions, collaborations between machines, and the effectiveness as well as the accuracy of itemized data collection. This investigation, therefore, identifies some major technical problems and challenges that current IoT-based digital manufacturing is facing, and proposes a method to bridge the technical gap for itemized product management. The highlights of this investigation are: 1) a data-oriented system architecture toward flexible data interaction between machines, 2) a customized machine-to-machine protocol for machine discovery, presence, and messaging, (3) flexible data structure and data presentation for interoperability, and (4) versatile information tracing approaches for product management. The proposed solutions have been implemented in PicknPack digital food manufacturing line, and achieved ubiquitous data interaction, online data collection, and versatile product information tracing methods have shown the feasibility and significance of the presented methods.
机译:物联网(IoT)技术在行业中的集成通过允许机器之间的无处不在的交互和协作自动化,使数​​字制造应用受益。在线数据收集和数据交互对于实时决策和机器协作至关重要。但是,由于数字制造应用程序的特殊性,物联网技术与实际机器操作之间的技术差距可能会阻碍有效的数据交互,机器之间的协作以及逐项收集数据的有效性和准确性。因此,这项调查确定了当前基于IoT的数字制造面临的一些主要技术问题和挑战,并提出了一种方法来弥合逐项产品管理的技术差距。这项研究的重点是:1)面向机器之间的灵活数据交互的面向数据的系统体系结构; 2)用于机器发现,状态和消息传递的自定义机器对机器协议;(3)灵活的数据结构和数据表示(4)用于产品管理的通用信息跟踪方法。所提出的解决方案已在PicknPack数字食品生产线中实施,并且实现了无处不在的数据交互,在线数据收集以及通用的产品信息跟踪方法,显示了所提出方法的可行性和意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号