首页> 外文期刊>IEEE transactions on industrial informatics >FASTGNN: A Topological Information Protected Federated Learning Approach for Traffic Speed Forecasting
【24h】

FASTGNN: A Topological Information Protected Federated Learning Approach for Traffic Speed Forecasting

机译:FASTGNN:拓扑信息受到交通预测的联邦学习方法受保护的联邦学习方法

获取原文
获取原文并翻译 | 示例

摘要

Federated learning has been applied to various tasks in intelligent transportation systems to protect data privacy through decentralized training schemes. The majority of the state-of-the-art models in intelligent transportation systems (ITS) are graph neural networks (GNN)-based for spatial information learning. When applying federated learning to the ITS tasks with GNN-based models, the existing frameworks can only protect the data privacy; however, ignore the one of topological information of transportation networks. In this article, we propose a novel federated learning framework to tackle this problem. Specifically, we introduce a differential privacy-based adjacency matrix preserving approach for protecting the topological information. We also propose an adjacency matrix aggregation approach to allow local GNN-based models to access the global network for a better training effect. Furthermore, we propose a GNN-based model named attention-based spatial-temporal graph neural networks (ASTGNN) for traffic speed forecasting. We integrate the proposed federated learning framework and ASTGNN as FASTGNN for traffic speed forecasting. Extensive case studies on a real-world dataset demonstrate that FASTGNN can develop accurate forecasting under the privacy preservation constraint.
机译:联合学习已应用于智能运输系统中的各种任务,以通过分散的培训计划保护数据隐私。智能交通系统(其)中最先进的模型是用于空间信息学习的图形神经网络(GNN)。使用基于GNN的模型应用联合学习到其任务时,现有框架只能保护数据隐私;但是,忽略运输网络的拓扑信息之一。在本文中,我们提出了一种新的联合学习框架来解决这个问题。具体地,我们介绍了一种用于保护拓扑信息的基于差异的基于隐私的邻接矩阵保存方法。我们还提出了一种邻接矩阵聚合方法,以允许基于本地GNN的模型访问全局网络以获得更好的培训效果。此外,我们提出了一个基于GNN的模型,名为基于关注的空间 - 时间图神经网络(ASTGNN),用于交通速度预测。我们将拟议的联合学习框架和ASTGNN整合为FastGNN以进行交通速度预测。对现实世界数据集的广泛案例研究表明,FastGNN可以在隐私保护约束下开发准确的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号