首页> 外文期刊>IEEE transactions on industrial informatics >Learning Local Gabor Pattern-Based Discriminative Dictionary of Froth Images for Flotation Process Working Condition Monitoring
【24h】

Learning Local Gabor Pattern-Based Discriminative Dictionary of Froth Images for Flotation Process Working Condition Monitoring

机译:学习本地Gabor模式的浮选过程浮潜辨证语法的浮选过程工作状态监测

获取原文
获取原文并翻译 | 示例

摘要

This article presents a simple yet powerful online flotation process working condition (FPWC) discrimination approach based on the sparse representation of froth images. It learns a local Gabor pattern-based discriminative dictionary with a linear classification model simultaneously for the FPWC identification by solving a sparsity-constrained optimization problem. The proposed method tends to achieve similar and distinct sparse codes of froth images for the same and different FPWCs, respectively, facilitating the accurate FPWC identification. To ensure the adaptability of the FPWC discrimination model, an incremental learning-based online model updating procedure is further derived to monitor the dynamically changing characteristics of FPWCs based on an introduced sparsity discrimination index. The proposed method was validated on an industrial preferential lead-flotation subcircuit process. The prototype monitoring system with extensive confirmatory and comparative experiments shows the effectiveness and superiority of the proposed method, which lays a foundation for the optimal control of industrial flotation processes.
机译:本文介绍了一个简单而强大的在线浮选过程工作条件(FPWC)歧视方法,基于泡沫图像的稀疏表示。它通过求解稀疏性约束优化问题来了解具有线性分类模型的本地Gabor模式的鉴别词典。所提出的方法倾向于达到相同和不同的FPWC的泡沫图像的类似且不同的稀疏代码,便于精确的FPWC识别。为了确保FPWC辨别模型的适应性,还导出基于增量的基于在线模型更新过程,以根据引入的稀疏性辨别指数监测FPWC的动态变化特性。该方法在工业优惠浮选浮标过程中验证了该方法。具有广泛确认和比较实验的原型监测系统显示了所提出的方法的有效性和优越性,为工业浮选过程的最佳控制奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号