首页> 外文期刊>IEEE transactions on industrial informatics >A Blockchained Federated Learning Framework for Cognitive Computing in Industry 4.0 Networks
【24h】

A Blockchained Federated Learning Framework for Cognitive Computing in Industry 4.0 Networks

机译:工业4.0网络中的认知计算的一个庞大的联合学习框架

获取原文
获取原文并翻译 | 示例

摘要

Cognitive computing, a revolutionary AI concept emulating human brain's reasoning process, is progressively flourishing in the Industry 4.0 automation. With the advancement of various AI and machine learning technologies the evolution toward improved decision making as well as data-driven intelligent manufacturing has already been evident. However, several emerging issues, including the poisoning attacks, performance, and inadequate data resources, etc., have to be resolved. Recent research works studied the problem lightly, which often leads to unreliable performance, inefficiency, and privacy leakage. In this article, we developed a decentralized paradigm for big data-driven cognitive computing (D2C), using federated learning and blockchain jointly. Federated learning can solve the problem of "data island" with privacy protection and efficient processing while blockchain provides incentive mechanism, fully decentralized fashion, and robust against poisoning attacks. Using blockchain-enabled federated learning help quick convergence with advanced verifications and member selections. Extensive evaluation and assessment findings demonstrate D2C's effectiveness relative to existing leading designs and models.
机译:认知计算,革命性的AI概念模仿人类脑的推理过程,在行业4.0自动化中逐渐蓬勃发展。随着各种AI和机器学习技术的进步,对改进的决策以及数据驱动的智能制造已经明显了。但是,必须解决几个新出现的问题,包括中毒攻击,性能和数据资源不足等。最近的研究工作轻轻研究了这个问题,这往往导致不可靠的性能,低效率和隐私泄漏。在本文中,我们开发了一种用于大数据驱动的认知计算(D2C)的分散范式,共同使用联合学习和区块链。联邦学习可以解决“数据岛”的问题,隐私保护和高效处理,而区块链提供激励机制,完全分散的时尚,危害中毒攻击。使用BlockChain的联合学习有助于快速收敛,具有高级验证和成员选择。广泛的评估和评估结果表明D2C相对于现有领先设计和模型的效力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号