首页> 外文期刊>IEEE transactions on industrial informatics >Sparse Low-Rank Tensor Decomposition for Metal Defect Detection Using Thermographic Imaging Diagnostics
【24h】

Sparse Low-Rank Tensor Decomposition for Metal Defect Detection Using Thermographic Imaging Diagnostics

机译:使用热选成像诊断,金属缺陷检测稀疏低级张量分解

获取原文
获取原文并翻译 | 示例

摘要

With the increasing use of induction thermography (IT) for nondestructive testing in the mechanical and rail industry, it becomes necessary for the Manufacturers to rapidly and accurately monitor the health of specimens. The most general problem for IT detection is due to strong noise interference. In order to counter it, general postprocessing is carried out. However, due to the more complex nature of noise and irregular shape specimens, this task becomes difficult and challenging. In this article, a low-rank tensor with a sparse mixture of Gaussian (LRTSMoG) decomposition algorithm for natural crack detection is proposed. The proposed algorithm models jointly the LRST pattern by using a tensor decomposition framework. In particular, the weak natural crack information can be extracted from strong noise. Low-rank tensor based iterative sparse MoG noise modeling is carried out to enhance the weak natural crack information as well as reducing the computational cost. In order to show the robustness and efficacy of the model, experiments are conducted for natural crack detection on a variety of specimens. A comparative analysis is presented with general tensor decomposition algorithms. The algorithms are evaluated quantitatively based on signal-to-noise-ratio along with the visual comparative analysis.
机译:随着使用感应热学(IT)的不断增加,在机械和轨道行业中进行无损检测,制造商必须快速准确地监测标本的健康。 IT检测的最一般问题是由于强烈的噪声干扰。为了抵消它,进行了一般的后处理。然而,由于噪声和不规则形状标本的性质更复杂,这项任务变得困难和具有挑战性。在本文中,提出了一种具有用于自然裂纹检测的高斯(LRTSMOG)分解算法的稀疏混合物的低级张量。所提出的算法通过使用张量分解框架联合LRST图案。特别地,可以从强噪声中提取弱的自然裂缝信息。基于低级张力的迭代稀疏沼泽噪声建模,以增强弱自然裂缝信息,并降低计算成本。为了展示模型的稳健性和功效,对各种标本的自然裂纹检测进行了实验。一般张量分解算法介绍了比较分析。基于信噪比和视觉比较分析,定量地评估算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号