首页> 外文期刊>IEEE transactions on industrial informatics >Online Autotuning Technique for IPMSM Servo Drive by Intelligent Identification of Moment of Inertia
【24h】

Online Autotuning Technique for IPMSM Servo Drive by Intelligent Identification of Moment of Inertia

机译:通过智能识别惯性识别IPMSM伺服驱动器的在线自动运输技术

获取原文
获取原文并翻译 | 示例

摘要

In this article, a real-time moment of inertia identification technique using Petri probabilistic fuzzy neural network with an asymmetric membership function (PPFNN-AMF) for an interior permanent magnet synchronous motor (IPMSM) servo drive is proposed. The estimated moment of inertia will be used in the online design of an integral-proportional (IP) speed controller to achieve the gains autotuning of the IPMSM servo drive. In the proposed method, the dynamic analysis of a field-oriented control IPMSM servo drive system with an IP speed controller is constructed first. Then, a heuristic approach using the PPFNN-AMF is proposed for the real-time identification of the moment of inertia of the IPMSM servo drive system. Moreover, the network structure and the convergence analysis of the PPFNN-AMF are devised and derivated. Furthermore, an IPMSM servo drive based on a high-performance digital signal processor is developed. Finally, from the experimental results, the gains of the IP speed controller can be tuned online effectively at different operating conditions with robust control characteristics.
机译:在本文中,提出了使用具有用于内部永磁同步电动机(IPMSM)伺服驱动器的具有不对称隶属函数(PPFNN-AMF)的Petri概率模糊神经网络的惯性识别技术的实时矩。估计的惯性矩将在整体比例(IP)速度控制器的在线设计中使用,以实现IPMSM伺服驱动器的获取自动传递。在该方法中,首先构建具有IP速度控制器的面向现场控制IPMSM伺服驱动系统的动态分析。然后,提出了一种使用PPFNN-AMF的启发式方法,用于实时识别IPMSM伺服驱动系统的惯性矩。此外,设计并导出了PPFNN-AMF的网络结构和收敛分析。此外,开发了基于高性能数字信号处理器的IPMSM伺服驱动器。最后,从实验结果,IP速度控制器的增益可以在具有稳健的控制特性的不同操作条件下有效地调谐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号