首页> 外文期刊>IEEE transactions on industrial informatics >Mesoscale Particle Size Predictive Model for Operational Optimal Control of Bauxite Ore Grinding Process
【24h】

Mesoscale Particle Size Predictive Model for Operational Optimal Control of Bauxite Ore Grinding Process

机译:铝土矿矿石研磨过程运行最优控制的介质粒度预测模型

获取原文
获取原文并翻译 | 示例

摘要

This article investigates the use of a mesoscale kinetic model to cooperate with the operational optimal control of bauxite ore grinding process. In this article, we propose a new modeling framework where a discretized distributed parameter macroscale model and a mesoscale kinetic model are combined to predict the grinding product particle size. The mesoscale kinetic method does not need an explicit model of the process because it describes the process as a stochastic process. However, the high computational demand has prevented the kinetic model from using an online setting. We overcome this problem by embedding an acceleration algorithm based on the tau-leap method. The proposed model is validated using experimental data. Finally, a solution of the bauxite ore grinding operational optimal control is proposed and the cooperation of the predictive model with other modular is demonstrated.
机译:本文调查了使用Mescrale动力学模型与铝土矿矿石研磨过程的操作最优控制配合。在本文中,我们提出了一种新的建模框架,其中组合了一个离散的分布参数Macroscale模型和Mescle动力学模型以预测研磨产品粒度。 Messcale动力学方法不需要该过程的显式模型,因为它将过程描述为随机过程。但是,高计算需求阻止了动力学模型使用在线设置。通过基于TAU-LEAP方法的加速算法嵌入加速算法,我们克服了这个问题。使用实验数据验证所提出的模型。最后,提出了一种铝土矿矿石研磨操作最优控制的解决方案,并证明了预测模型与其他模块的合作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号