首页> 外文期刊>IEEE transactions on industrial informatics >A Fast Nearest Neighbor Search Scheme Over Outsourced Encrypted Medical Images
【24h】

A Fast Nearest Neighbor Search Scheme Over Outsourced Encrypted Medical Images

机译:一个快速最近的邻接搜索方案通过外包加密的医学图像

获取原文
获取原文并翻译 | 示例

摘要

Medical imaging is crucial for medical diagnosis, and the sensitive nature of medical images necessitates rigorous security and privacy solutions to be in place. In a cloud-based medical system for Healthcare Industry 4.0, medical images should be encrypted prior to being outsourced. However, processing queries over encrypted data without first executing the decryption operation is challenging and impractical at present. In this paper, we propose a secure and efficient scheme to find the exact nearest neighbor over encrypted medical images. Instead of calculating the Euclidean distance, we reject candidates by computing the lower bound of the Euclidean distance that is related to the mean and standard deviation of data. Unlike most existing schemes, our scheme can obtain the exact nearest neighbor rather than an approximate result. We, then, evaluate our proposed approach to demonstrate its utility.
机译:医学成像对于医学诊断至关重要,医学图像的敏感性需要严格的安全性和隐私解决方案。在基于云的医疗保健行业4.0的医疗系统中,在外包之前应该加密医学图像。然而,在未首先执行解密操作的情况下处理对加密数据的查询是具有挑战性的,并且目前是不切实际的。在本文中,我们提出了一种安全有效的方案来查找加密医学图像上的确切最近邻居。通过计算与数据的平均值和标准偏差有关的欧几里德距离的下限来拒绝候选者而不是计算欧几里德距离。与大多数现有方案不同,我们的方案可以获得精确的最近邻居而不是近似结果。然后,我们评估我们提出的方法来证明其效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号