首页> 外文期刊>IEEE transactions on industrial informatics >High-Precision Identification of Power Quality Disturbances Under Strong Noise Environment Based on FastICA and Random Forest
【24h】

High-Precision Identification of Power Quality Disturbances Under Strong Noise Environment Based on FastICA and Random Forest

机译:基于Fastica和随机林的强噪声环境下电能质量障碍的高精度识别

获取原文
获取原文并翻译 | 示例

摘要

The continuous integration of fluctuating distributed generators and nonlinear power electronic equipment have produced severe signal contamination and induced various power quality (PQ) problems to modern power systems. PQ disturbances (PQD) greatly ruin user experience and also bring significant power losses. Therefore, a high-precision machine learning-based PQD identification model is proposed in this article, which combines the advantages of the modified fast independent component analysis method and the improved random forest classifier. First, ten types of PQD models are established, and fast independent component analysis is adopted to denoise the PQD sample signals mixed with Gaussian noises. Second, the discrete wavelet transform is utilized to extract the statistical and wavelet-related features from the denoised PQD samples, so as to form the desired feature set. Finally, a random forest-based PQD identification model is proposed. Compared with several existing models, the proposed model has higher identification accuracy and stronger feasibility under strong noise environment, which could provide valuable information for future PQ management.
机译:波动分布式发电机和非线性电力电子设备的连续集成产生了严重的信号污染,并对现代电力系统诱导了各种电力质量(PQ)问题。 PQ扰动(PQD)大大破坏了用户体验并带来了显着的功率损失。因此,在本文中提出了一种基于高精度的基于机器学习的PQD识别模型,其结合了改进的快速独立分析方法和改进的随机林分类器的优点。首先,建立十种类型的PQD模型,采用快速独立的分量分析来表示与高斯噪声混合的PQD样本信号。其次,利用离散小波变换来从去噪PQD样品中提取统计和小波相关的特征,以便形成所需的特征集。最后,提出了一种随机林的PQD识别模型。与若干现有型号相比,该型号在强噪声环境下具有更高的识别精度和更强的可行性,可以为未来的PQ管理提供有价值的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号